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Abstract 

This paper presented a new unobtrusiveness non-invasive technique for controlling, 

hardware developed microcontroller-based, robot Arm using Brain EEG signal processing. 

The system can help the paralyzed arm patients, who have severe disabilities, to control 

robots that can help them in daily living activities. Also the robot can be used to simulate the 

desired human arm’s movements in situation where there are difficult or dangerous conditions 

that human’s arm cannot act under it in many real systems applications. Fast Fourier 

Transform FFT is used for feature extraction. Multi-layer Perceptron Neural Network trained 

by a standard back propagation algorithm is used as a classifier to classify 4 different arm 

movements intention which are: Shoulder up, Shoulder down elbow up and elbow down.  The 

proposed technique produced high classification rates of 80%, 90%, 80% and 80% for the 4 

different movements respectively. Two channels only are used, in our experiment, F4 which 

located at the prefrontal cortex and FC5 which located at the supplementary motor cortex of 

the brain. This improves the unobtrusiveness of our system that still achieved good 

recognition rates in compare to other related works as shown in the experimental results. 

Another main contribution in this paper is the hardware development of a 8051 

microcontroller based robotic arm that has six degrees of freedom for movements.  

Keywords: EEG Signal processing, Brain Computer Interface, Brain Robot Interface, 

Bio_signal Processing, classification of Brain signals, microcontroller-

based Robtic arm 

 

1. Introduction 
Many different disorders can disrupt the neuromuscular channels through which the brain 

communicates with and controls its external environment. Amyotrophic lateral sclerosis 
(ALS), brainstem stroke, brain or spinal cord injury, cerebral palsy, muscular dystrophies, 
multiple sclerosis, and numerous other diseases impair the neural pathways that control 
muscles or impair the muscles themselves. 

 
Researchers recently proposed new scientific methods for restoring function to those with 

motor impairments; one of these methods is to provide the brain with a new non-muscular 
communication and control channel, a direct Brain–Machine Interface (BMI), for conveying 
messages and commands to the external world or devices.  

 
Variety of methods for monitoring brain activity might serve as a BMI. These include, 

besides electroencephalography (EEG) and more invasive electrophysiological methods, 
magneto encephalography (MEG), positron emission tomography (PET), functional magnetic 
resonance imaging (fMRI), and optical imaging. However, MEG, PET, fMRI, and optical 
imaging are still technically demanding and expensive. Furthermore, PET, fMRI, and optical 
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imaging, which depend on blood flow, have long time constants and thus are less amenable to 
rapid communication. At present, only EEG and related methods, which have relatively short 
time constants, can function in most environments, and require relatively simple and 
inexpensive equipment offer the possibility of a new non-muscular communication and control 
channel, a practical BMI. 

 
An important type of BMIs are non-invasive systems utilizing electroencephalography 

(EEG) to measure the brain activity, which provides a high temporal resolution of the 
measurement and easy as well as locally unrestricted application, enabling portable devices 
that can operate in real time. 

 
The EEG is the electrical signal generated by the brain and recorded in the scalp of the 

subject. These signals are spontaneous because there are always currents in the scalp of living 
subjects. In other words, the brain is never at rest [1]. EEG signal has five major wave patterns, 
which are Delta rhythm, Theta rhythm, Alpha rhythm, Beta rhythm and Gamma rhythm. Delta 
(0.5–4 Hz): These waves are primarily associated with deep sleep and may be present in the 
waking state. Theta (4–8 Hz): These waves have been associated with access to unconscious 
material, creative inspiration and deep meditation. It seems to be related to the level of arousal. 
Alpha (8–12 Hz): these waves have been thought to indicate both a relaxed awareness without 
any attention or concentration. It is brought out by closing the eyes and by relaxation. Beta 
(12-30) Hz: It is most evident in the frontal region and associated with active busy or anxious 
thinking and active concentration. Gamma range (30-45): the amplitudes of these rhythms are 
very low and their occurrence is rare [2]. 

 
This paper presented a new unobtrusiveness non-invasive system for controlling a 

developed, microcontroller based, robot Arm using Brain EEG signal processing. two channels 
only are used to improve the system unobtrusiveness and still achieved a high recognition rates 
ranges from 80%-90%for 4 classes of movements intentions,  which are: Shoulder up, 
Shoulder down,  Elbow up and Elbow down, that.  Fast Fourier transform is used to extract 
features from the EEG signal. Multi-layer Perceptron Neural Network trained by a standard 
back propagation algorithm is used for classification in this research. Other main contribution 
of this research is the microcontroller-based hardware development of the used robot Arm. 

 
The reminder of this paper proceeds as follows. Section 2 presents the previous work for 

brain robot interface systems. Section 3 explains the system methodology and illustrates the 
used techniques for feature extraction and data classification and the hardware architecture of 
the developed Robot Arm. Section 4 explains the experimental results of the proposed 
methodology for classifying the 4 arm movements. Section 5 explains the software used for 
system implementation. Conclusion and future work are illustred in section 6. 

 

2. Related Work 
 

This research presented a developed microcontroller-based robot Arm that can be 
controlled using a brain EEG signal processing.  Researches in this area are of potentially 
enormous value for patients with motor impairments and also the people who lose their arms. 

  
John Donoghue and his team at Brown University developed a BrainGate Neural 

Interface system [3]. The BrainGate system is a neuromotor prosthetic device consisting of an 
array of one hundred silicon microelectrodes, each of which is 1mm long and thinner than a 
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human hair. The electrodes are arranged less than half a millimeter apart on the array, which is 
attached to a 13cm-long ribbon cable connecting it to a computer. The device, which has been 
implanted in a patient’s (who suffered from spinal cord injury) motor cortex, detects electrical 
activity that is associated with the planning of movements, and transmits them to a series of 
computers. The signals are translated by the computers, which then produce an output that 
controls the movements of a multi-jointed robotic prosthetic prosthesis to grasp and move an 
object, just by thinking about the movements necessary to do so. But the main drawback of this 
system is that, it is an invasive system. 

 
Rajesh Rao, at the University of Washington’s Neural Systems Laboratory, has 

developed a brain-machine interface (BMI) which can be used to control the movements of a 
small humanoid robot. The device is non-invasive – it is based on electroencephalography 
(EEG), and consists of a cap fitted with 32 electrodes. The cap gathers electrical signals (event-
related potentials) from the surface of the motor and premotor cortices and sends them to the 
robot. Currently, the device can only be used to convey basic instructions, such as which 
direction to move in, and to pick up an object, to the robot. This is because it detects the brain’s 
electrical activity only indirectly from the electrodes on the scalp, and not from within the 
brain itself [4]. The great number of used electrodes makes this system obtrusive.  

 
In literature [5] Honda Research Institute, Japan, has demonstrated a Brain-Machine 

Interface (BMI) that enables a user to control an ASIMO robot using nothing more than 
thought. Wearing a headset containing both electroencephalography (EEG) and near-infrared 
spectroscopy (NIRS) sensors, the user simply imagines moving either his right hand, left hand, 
tongue or feet - and ASIMO makes a corresponding movement. The system is still huge and 
slow, and the commands are quite crude and imprecise. 

 
[6] Currently in progress in developing a research project on EEG-based BMI for 

controlling ASIMO robot. The system utilizing two complementary EEG components, the 
P300 event-related potential, a discrete selection mechanism triggered by rare, relevant stimuli 
in a sequence of background stimuli, and the imagination of movement, based on the principle 
that the sensorimotorcortex activity is identical whether a movement is actually performed or 
only imagined. 

 
[7] Developed an EEG-based Brain Computer Interface (BCI) that consists in register the 

brain rhythmic activity through electrodes situated on the scalp in order to differentiate one 

cognitive process from rest state and use it to control one degree of freedom of the robot arm. 

The robot arm used in the experiments was a FANUC LR Mate 200iB. This robot has six 

degrees of freedom. Several cognitive process or “tasks” were used to control the robot arm. 

One of the tasks consists in a “motor imagery”: to think that is performing a movement with 

the right arm. This motor task has been selected because, as indicated in [12], to imagine a 

movement generates the same mental process and even physical that to make the movement, 

only that the movement is blocked. It has been tested other cognitive process, such as recite the 

“Our Father” or “Happy Birthday”. These tasks are more complex cognitive process related 

with the language and memory. The system used four channels. An evaluation for the 

optimum position of the electrodes has been done with a fMRI-study. The electrodes were 

disposed according to the 10/20 International System [2]. These are situated in the positions 

F4, FP2 (above the prefrontal cortex), Cz, C3 (above the motor cortex) and ground on Oz. 

wavelet transform is used for feature extraction and MLP neural network trained by a standard 

back propagation algorithm was used as a classifier. The input data to the classifier algorithm 
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was the concatenation of the four channels spectrum. The selected parameters for the neural 

network are: 1 hidden layer, 30 neurons in that layer, a learning rate value of 0.03 and 

momentum of 0.2. The number of epochs has been limited to 1000. The error percentage of 

cross validation is the output of the neural network. Different frequency bands have been tested 

into the frequency range between 0 to 32 Hz to check which of them provide better results. For 

the cognitive process “Motor Imagery (right arm)”, band between 16 and 31Hz offered good 

results (with less error 17%) and when a more specific band like between 24 and 31 Hz was 

selected results are improved (error = 16%) also the total band (0-31) provided error rate of 

20%. For the cognitive process “Recite Our father” the results were worse, but not so bad. As 

previously, better results were obtained if a subband of the 0-32 Hz range is selected 

(error=26%).  
 

Some other researches have been developed for another category of brain robot interface 

to enhance post-stroke rehabilitation of arm or hand movement such as researches [8-13]. The 

recent research in this approach is [14], a combined BCI-robotics system developed at the 

Max Planck Institute for Intelligent Systems, which used a BCI-based shared-control strategy 

to drive a Barret WAM 7-degree-of-freedom robot arm that guides a subject’s arm. To 

achieve high classification accuracy with EEG, they decoded only (one dimensional) 

movement intentions. Experimental validation of the system’s setup was carried out both with 

healthy subjects and stroke patients. A key step in the setup is the online decoding of the 

movement intention of the system using an 35-electrode EEG-based BCI module. The signals 

are processed into 20 online features per electrode by discretizing the normalized average 

power spectral densities into 2 Hz frequency bins in the frequency range (2–42 Hz). The 

online decoding decided between three movement intentions of the patient, i.e., flexion, 

resting and extension, using the features described above. Two linear support vector machine 

(SVM) classifiers [15] were generated on-the-fly after a training section to classify the three 

movement intentions.  

 

3.  Proposed  system  architecture 

As illustrated in Fig.1. The system’s methodology consists of five main steps which are: 

Signal collections (acquisition), signal preprocessing to remove the noises, features extraction 

from the EEG signals, classification of the signals to four classes that corresponding to the 

four movement intentions we want to recognize and then the last step is to send a controlling 

command to the robot arm interface to simulate the desired  movement. 

 

 

  

 

 

 

Figure 1. System Methodology 

3.1 Signal Acquisition 

 

Taking into account of reducing distraction to subjects, a reduced number of electrodes 
must be used in order to improve the system unobtrusiveness. So in this research two channels 
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only are used F4 (above the prefrontal cortex) and FC5 (above the supplementary motor 
cortex) to collect the brain data. We used the Emotiv EPOC headset [16] which has 14 
electrodes and 2 reference electrodes (see Figures 2). The electrodes are placed according to 
the standard 10–20 international system [2] and are labeled as such [17]. The headset transmits 
encrypted data wirelessly to a Windows-based machine; the wireless chip is proprietary and 
operates in the same frequency range as 802.11 (2.4 Ghz). An evaluation for the optimum 
channels to be used has been done using Emotiv SDK (research edition) Test Bench.  The Test 
Bench enables to trace the power of the signals for selected channels from the 14 channels of 
the Emotiv-Headset and also trace the power of the 4 rhythm of the signal using Fast Fourier 
Transform (FFT) as shown in figure 3&4. According to the evaluation done, F4 and FC5 
channels are selected for data acquisition for their spatial properties, so it seemed to give high 
power signals at the recording conditions. Also the more power continuous rhythms were 
Alpha and Beta rhythms. Another reason for selecting this band is that, it produced best results 
in [7].   

 
The headset samples all channels at 128 samples/second, each of which is a 4-byte 

floating-point number corresponding to the voltage of a single electrode. Seven seconds epoch 
is used, then we have a total of 896 samples for each channel. Data were collected from a 
healthy subject with 25 iterations for each movement intention (15 iterations are used for 
training and the remaining 10 are used for testing). The four movements intentions classified in 
this research are: shoulder up, shoulder down, elbow up and elbow down (for the Right arm). 
Subject was required to sit at rest in a silent room with eyes closed, and remain calm and 
relaxed, throughout the whole recording procedure.  
 

  
(a)            (b)    (c) 

 
Figure 2: a) Emotiv Epoc Headset.  b) Headset Electrodes positions. c) raw data at rest state 
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Figure 3. Channels Analysis using Emotiv SDK Test Bench 

  

 
Figure 4. Frequency Bands Analysis for channel F4 using Emotiv SDK Test Bench 

 

3.2 Signal preprocessing 

 

EEG signal has five major wave patterns, which are Delta rhythm, Theta rhythm, Alpha 
rhythm, Beta rhythm and Gamma rhythm. Approximate ranges for these rhythms are as 
follows, as mentioned before in the introduction, Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–
12 Hz), Beta (12-30 Hz) and Gamma range (30-45 Hz) [1]. 
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So in order to remove artifacts and obtaining better frequency characteristics, raw EEG 
signals must be filtered. The Emotiv SDK filtered the signal, using a band pass filter (Built in 
digital 5th order Sinc filter with bandwidth 0.2 - 45Hz) and digital notch filters at 50Hz and 
60Hz,  to remove other signals noises and the noise produced by alternating current at 50Hz 
generated by the recording console. 

  

3.3 Features Extraction 
 

Many research works are based on using Fourier transform for features extraction.  The 
well-known discrete Fourier transform (DFT), with expression: 

         
  (1) 

 
 
Where wN = e

(-2πi)/N
  is the N

th
 root of unity, is used herein to compute the DFT of each epoch. 

In our case, N is equal to 896 (128 Hz x 7 seconds). 
 

The development of computationally efficient algorithms for the DFT is made possible if 
we adopt a divide-and-conquer approach. This approach is based on decomposition of an N-
point DFT into successively smaller DFTs. This basic approach leads to a family of 
computationally efficient algorithms known collectively as Fast Fourier Transform FFT 
algorithms. The Radix-2 decimation in time (DIT) FFT algorithm rearranges the DFT of the 
function x(n) into two parts: a sum over the even-numbered indices  and a sum over the odd-
numbered indices as follows [18]. 

 
 

 
   (2) 

 
 
Where: 
F1(k) and F2(k) are the N/2 point DFTs of the sequence f1(m) and f2(m) respectively. Where 
f1(m) & f2(m) obtained by decimating x(n) to even and odd numbered indices. 
 

This result, expressing the DFT of length N recursively in terms of two DFTs of size N/2, 
is the core of the radix-2 DIT fast Fourier transform. The algorithm gains its speed by re-using 
the results of intermediate computations to compute multiple DFT outputs.  

 
Features are extracted by selecting the frequency band of interest. Two different frequency 

bands are used for features extraction in this research. Each band produced different 
classification rate for each class of movement of the robot arm. These two bands are as 
follows. 

 
1. For the first test, we select to use the frequency band from 8 to 30 Hz which represented the 

alpha, and beta EEG bands.  As we found in the evaluation test using the Emotiv-SDK Test 
Bench, these bands had the highest power during our experiment. Also these bands 
produced the best results in [7].  

2. For the second test, we used the top 10 frequencies that have maximum DFT amplitude 
values (maximum power spectrum). 
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3.4 Classification 

 

Neural network has been used by many researchers to classify the EEG signal [19]. In 

this research, multi-layer Perceptron Neural Network trained by a standard back propagation 

algorithm is used for classification. The data collected are randomly divided into training and 

testing sets. Every time the system is executed; 60% of the data is used for training and the 

remaining 40% for testing. Extracted features are then defined as input neurons to the neural 

network algorithm.  

 

The output layer should contain 4 neurons for the four classes that represent the four arm 

movement that we want to classify. The number of neurons in the input layer varied according 

to the length of the features vector. The classifier performs a series of feed forward & back 

propagation processes with each pattern of the training set until the stopping criteria is met. 

During classification a feed forward operation is done on the input pattern & the desired class 

is given at the output layer. The maximum response of the output neurons is the index of the 

desired class. Since there are no certain rules for choosing the number of hidden layers & 

hidden neurons, many tests were done to select the optimal configuration for the neural 

network with each feature set used as will be explained in the experimental results. 

 

3.5 Hardware Developing of the Robot Arm 

 

Another main contribution in this research is the hardware developing of the used robot 

arm. We suggested developing a simple low price Robot arm to simulate the recognized 

movement intention from the brain EEG signals. A 8051 microcontroller-based robotic arm is 

developed as shown in figure 5. The developed robot can be controlled to simulate a set of Six 

degrees of movements for the arm which are: finger close and open, hand up and down, hand 

right and left, Elbow up and Down, Shoulder up and down and moving the whole robot in one 

of the four directions (left, right, forward and backward) as shown in figure 6. 

  

 
Figure 5. The Hardware Developed Robot Arm 

 

Usually the robot as the one developed in [20] is driven using stepper motors. But since 

the stepper motor is very expensive and we aim to develop a low cost robot arm, we used DC 

motors instead to drive our robot by controlling the motors to get the movement in the 

required direction. Ten DC motors are used to control the robot-arm to get the desired 
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movement. To control any of the robot’s motor we must send a controlling character code 

from the personal computer through the serial port (RS232 port) connection. The block 

diagram of the hardware components for the robot’s motors interface (control unit) to the 

computer is as shown in figure 7. The main hardware components are illustrated as follows. 

 

 

 

(a) Finger open and close
 

 

(b) hand up  (c) hand down    (d) hand right         (e) hand left 

 
(f) Elbow up        (g) Elbow down         (h) Shoulder up         (i) Shoulder down 

 
Figure 6. Robot Arm movements 

 

 

 

 

 

 

 

 
Figure 7. Block diagram of the main hardware components of the control unit of the Robot arm 

 

Microcontroller 

A microcontroller unit (MCU) is an entire computer manufactured on a single chip. 

Microcontrollers are usually dedicated devices embedded within an application e.g. as engine 

controllers in automobiles and as exposure and focus controllers in cameras. In order to serve 

these applications, they have a high concentration of on-chip facilities such as: serial ports, 

parallel input/output ports, timers, counters, interrupt control, analog-to-digital converters, 

random access memory, read only memory, etc.  
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We used the Atmel 8051 Microcontroller “AT89S52” Chip for our developed robot. It is 

a low-power, high-performance CMOS 8-bit microcontroller with 8KB of In-System 

Programmable (ISP) Flash Memory. Its pin configuration is as shown in figure 8 [21]. 

 

The AT89S52 provides the following standard features: 8K bytes of Flash, 256 bytes of 

RAM, 32 I/O lines, Watchdog timer, two data pointers, three 16-bit timer/counters, a six-

vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator, and clock 

circuitry. Detailed specifications can be found in [21]. 

  

 
Figure 8. 40-lead PDIP pin configuration for AT89s52 microcontroller Chip [21] 

 

MAX233 line drivers/receivers 

A +5V-Powered, Multichannel RS232 line Drivers/Receivers (MAX233 chip from 

Maxim) is used to convert from RS232 voltage level to TTL voltage level. Pin configuration 

and typical operating circuit for MAX233 is as shown in figure 9 [22].  

  
DC Motor 

To rotate the rotor of the used DC motor we want a big electric current to pass through its 

coils. For the used motors in the developed arm robot we want 12 Volt and 4 Ampere, so we 

use relays to get this required high current. 
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Figure 9.  MAX233/MAX233A Pin Configuration and Typical Operating Circuit [22]. 

 
Relay 

A relay is an electrically operated switch that uses an electromagnet to operate a 

switching mechanism mechanically. The used relay needs about 12 Volt and 100 mille 

Ampere of current to open the switch and pass a high current 12 volt and 4 Ampere to drive 

the rotor of the DC motor. Since the used 8051 microcontroller can operate 3 Volt and 10 

mille Ampere only that can’t open the relay, so we need external transistors which can operate 

100 mille Ampere to the relay. So we suggested using ULN2004A chip. 

 

ULN2004A 

ULN2004A is a high voltage, high current Darlington array containing seven open 

collector Darlington pairs with common emitters. Each channel rated at 500mA and can 

withstand peak currents of 600mA. Suppression diodes are included for inductive load driving 

and the inputs are pinned opposite the outputs to simplify board layout as shown in figure 10 

[23]. 

 

Hardware wiring of the main components of the robot arm control unit is as shown in 

figure 11. 

 

 
Figure 10. ULN2004A Pin Configuration [23]. 
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Figure 11. Hardware Wiring of the Robot-Arm Control Unit 

 

3.6 Controlling the robot’s motors 

 

Microcontroller takes commands serially  through RS232 serial port. If we want to rotate 

any motor so we need to send a special character to the microcontroller which decodes this 

character command and then executes the on-board program that we built to output the 

required signal and send it to the ULN to open the relay that belongs to this motor. We have 

10 motors in our developed robot arm, each motor has three states: Forward, Backward and 

Stop. Computer send serially a block of 10 characters array of states of motors to the 

microcontroller such as for example:  [stop, stop, stop, backward, forward, stop, forward, 

forward, backward, stop], the microcontroller then store it in its buffers and then check all 

motors’ states and move the motors. C programming is used to develop the program for the 

8051 micro-controller platform [24] that takes robot’s motor signal (array of states)  as input 

from RS232 port and controls the robot operation programmatically by sending the required 

control signals to the robot’s motors (show figure 12). 

 

4. Experimental Results for the EEG signal recognition 
  

During the experiment, subject is required to sit at rest with eyes closed in a silent room, 
wearing the Emotiv Epoc headset and then continuously imagine the required movement for 7 
seconds. Data are collected from the two channels F4 and FC5 at sampling frequency of 128 
Hz. Two different features sets are used as follows. 

 
1. Discrete Fourier Transform (DFT) amplitude values for the frequency band from 8-30Hz 

(Alpha and Beta Bands). Thus we have 23 features for each channel and a total of 46 
features for the 2 channels used. 
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2. Discrete Fourier Transform (DFT) amplitude values for the Top ten frequencies that have 
maximum amplitude. Thus we have 10 features for each channel and then a total of 20 
features for each subject. 
 

Multi-layer Perceptron Neural Network trained by a standard back propagation algorithm 
is used for classification. The number of neurons in the input layer varied according to the 
length of the features vectors, which are 46 and 20 for the two features sets used. Many tests 
were done to find the optimal configuration for the neural network in terms of: number of 
hidden layers (1 or 2), number of neurons in the hidden layer (100 or 1000) and the maximum 
number of iterations (epochs) in the learning process (100 or 1000). For each features set, the 
configuration that produced optimal weights (which lead to maximum correct classification 
rate in the testing) for I/O mapping is used as shown in table I. Thus we can conclude that, the 
classifier (neural network) configuration may play an important role in producing the best 
classification rate. The activation function used was the sigmoid function and the training 
stopped when either the maximum number of epochs (iterations) reached the recorded value in 
Table I or the mean square error reached to a small value such as 0.001. 

 

 The correct classification rate (CC-rate) for each movement is calculated according to the 
following equation: 

 CC_rate= Ct/Tn * 100%  (2) 

Where Ct is the total number of correct classifications and Tn is the total number of 
testing samples (10 samples for each movement). An important notice we must mention here is 
that, increasing the test samples logically enhances the percentage rate. 

 
Classification rate for each movement intention using each features set is recorded in 

Table II.  Graphical representation for the results is as shown in Figure 13. As shown in table II 
features set 1 produced better results than set 2. Error rates ranges from 10% - 20% are 
achieved. These results surpassed the results found in [7] with more movements recognized in 
this research.   

TABLE I.  Optimal Neural Network configuration for each  features set 

Features set No.  Input 

neurons  

No . 

Iterations 

No. hidden 

layers 

No. neurons in 

hidden layer 

1- DFT [8-30] 46 1000 1 1000 

2- DFT top 10 20 1000 1 100 

TABLE II.  Classification Rate for each Arm movement for each features set 

Movement 
Shoulder 

up 

Shoulder 

down 

Elbow 

up 

Elbow 

down 

Features  set 1 
Correct no 

Rate 

8/10 

80%  

9/10 

90% 

8/10 

80% 

8/10 

80% 

Features set 2 
Correct no 

Rate 

7/10 

70% 

8/10 

80% 

8/10 

80% 

7/10 

70% 
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Figure 12. The developed C program for programming the Microcontroller 

 

#include <reg51.h>  

sbit sholder_d=P1^0;  

sbit l_b=P1^1;  

sbit l_f=P1^2;  

sbit r_f=P1^3;  

sbit r_b=P1^4;  

sbit hand_r=P1^5;  

sbit hand_l=P1^6;  

sbit f_2_o=P2^0;  

sbit f_2_c=P2^1;  

sbit f_3_o=P2^2;  

sbit f_3_c=P2^4;  

sbit f_4_o=P2^6;  

sbit f_4_c=P3^2;  

sbit elbow_d=P2^3;  

sbit elbow_u=P2^5;  

sbit f_1_o=P3^3;  

sbit f_1_c=P3^4;  

sbit hand_d=P3^5;  

sbit sholder_u=P3^6;  

sbit hand_u=P3^7;  

unsigned char finger1=0;             //b open // c close //a stop  

unsigned char finger2 = 0;           //b open // c close //a stop  

unsigned char finger3 = 0;           //b open // c close //a stop  

unsigned char finger4 = 0;           //b open // c close //a stop  

unsigned char hand_u_d = 0;       //b up // c down //a stop  

unsigned char hand_r_l = 0;         //b right // c left //a stop  

unsigned char elbow_u_d = 0;     //b up // c down //a stop  

unsigned char sholder_u_d = 0;   //b up // c down //a stop  

unsigned char motor_r = 0;    // b forward // c backward //a stop  

unsigned char motor_l = 0;    / /b forward // c backward //a stop  

unsigned char counter=0;  

unsigned char x;  

unsigned char go=0;  

 

void OnSerialISR() interrupt 4  

{ counter++;  

if(counter>10)  

{ counter=1; }  

if (RI == 1)  

{ x = SBUF; //store the received byte  

RI = 0;  

/////////////////////// code check ///////////////////////////////  

if(counter==1)  

{ finger1=x; } else if(counter==2) { finger2=x; } else 

if(counter==3) { finger3=x; } else if(counter==4) { finger4=x; } 

else if(counter==5)  { hand_u_d=x; } else if(counter==6)  

{ hand_r_l=x; } else if(counter==7) { elbow_u_d=x; } else 

if(counter==8) { sholder_u_d=x; } else if(counter==9) 

{motor_r=x; } else if(counter==10) { go=1; motor_l=x; P0=20; 

}  

} }  

///////////////////////////// Main ///////////////////////////  

void main(void)  

{ P0=0;  

P1=0;  

P2=0;  

f_4_c=0;  

f_1_o=0;  

f_1_c=0;  

hand_d=0;  

sholder_u=0;  

hand_u=0;  

TMOD=0x20; //use Timer 1, mode 2  

TH1=0xFD; //9600 baud rate  

SCON=0x50;  

IE=0x90;  

TR1=1; //start timer  

while (1)  

{  

if(go==1)  

{ go=0;  

/// activating the states of the motors  

if(finger1=='a') { f_1_o=0; f_1_c=0; } else  

if(finger1=='b') { f_1_o=1; } else  

if(finger1=='c') { f_1_c=1; }  

 

if(finger2=='a') { f_2_o=0; f_2_c=0; } else  

if(finger2=='b') { f_2_o=1; } else  

if(finger2=='c') { f_2_c=1; }  

 

if(finger3=='a') { f_3_o=0; f_3_c=0; } else  

if(finger3=='b') { f_3_o=1; } else  

if(finger3=='c') { f_3_c=1; }  

 

if(finger4=='a') { f_4_o=0; f_4_c=0; } else  

if(finger4=='b') { f_4_o=1; } else 

 if(finger4=='c') { f_4_c=1; }  

 

if(hand_u_d=='a')  

{ hand_d=0; hand_u=0; } else  

if(hand_u_d=='b') { hand_u=1; } else  

if(hand_u_d=='c') { hand_d=1; }  

 

if(hand_r_l=='a') { hand_r=0; hand_l=0; } else 

if(hand_r_l=='b') { hand_r=1; } else if(hand_r_l=='c') { 

hand_l=1;}  

 

if(elbow_u_d=='a')  

{ elbow_d=0; elbow_u=0; } else 

 if(elbow_u_d=='b') { elbow_u=1; } else  

if(elbow_u_d=='c') { elbow_d=1; }  

 

if(sholder_u_d=='a') { sholder_d=0; sholder_u=0; } else  

if(sholder_u_d=='b') { sholder_u=1; } else  

if(sholder_u_d=='c') { sholder_d=1; }  

 

if(motor_r=='a') { r_b=0; r_f=0; } else  

if(motor_r=='b') { r_f=1; } else 

 if(motor_r=='c') { r_b=1; }  

 

if(motor_l=='a') { l_b=0; l_f=0; } else  

if(motor_l=='b') { l_f=1; } else  

if(motor_l=='c') { l_b=1; }  

} } } 

///////////////////////////// END Main //////////////////////////  
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Figure 13. Classification Rate for each movement type with each features set 

 

Once the decision of the current state is obtained, this information is translated to a 

pertinent robot command to produce the required movement. 

  

5. System Implementation 
 

Matlab 10 and Neurosolution package is used to implement the signal classification 

module. Proteus 7 Professional, software tool, is used to simulate the robot hardware design 

to trace it before wiring. The developed microcontroller C program that used to control the 

robot’s motors is shown in figure 12. Keil uVision 4 software is used to debug and convert 

the developed C program to Hexa file format to be burned on the Microcontroller ROM chip. 

Visual C# is used to implement the interface program for controlling the robot through the PC 

after signal recognition.  
 

6. Conclusion and Future Work 
 

This paper presented a new unobtrusiveness non-invasive technique for controlling a 

developed microcontroller-based robot Arm using Brain EEG signal processing. The system 

can help the paralyzed arm patients, who have severe disabilities, to control robots that can 

help them in daily living activities. Fast Fourier Transform FFT is used for feature extraction 

using two different features sets. Multi-layer Perceptron Neural Network trained by a standard 

back propagation algorithm is used as a classifier to classify 4 different arm movements’ 

intentions which are: Shoulder up, Shoulder down elbow up and elbow down.  The proposed 

technique produced high classification rates of 80%, 90%, 80% and 80% for the 4 different 

arm movements respectively. Taking into account of reducing distraction to subjects, two 

channels only are used, in our experiment, which located at the prefrontal cortex and the 

supplementary motor cortex of the brain. This improves the unobtrusiveness of our system 

that still achieved good recognition rates in compare to other related works as shown in the 

experimental results. Another main contribution in this paper is the hardware development of 
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the used robot Arm. A simple hardware microcontroller-based robot arm is developed. It has 

six degrees of movement for fingers, hand, elbow and shoulder. Recognizing the other robotic 

arm’s movements using the brain signals will be the main goal for our future work. Also 

enhancing the developed robot interface to reduce the time delay and enhance the response 

will be considered in our future work. 
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