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Abstract 
  

Parametric domain techniques have proved to be quite successful in the detection of 

2-D and 3-D objects and motion. Most noted in these methods is the Motion Detection 

Randomized Hough Transform (MDRHT). This technique proved to be able to decreases 

considerably the time consumption and memory requirements of the Hough Transform 

through the use of a random sampling mechanism in the image space. In such method, the 

most important problem is the establishment of correspondence between sets of points 

belonging to the same object in successive motion frames. In previous researches, 2-points 

correspondence rules are commonly used. In the present paper, we introduce a mathematical 

analysis to investigate the invariance of such rules under translation and rotation. The present 

paper also introduces two new 3-points correspondence rules and proves one of them to be 

invariant under translational and rotational motion. The performance of the different 

correspondence rules has been investigated through experiments using a randomized 

algorithm. From these experiments, the newly introduced 3-poin rules proved to outperform 

the other rules by 3 times and 8 times for translational and rotational motion detection, 

respectively.  
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1. Introduction 
 

The detection and recognition of a moving object in a sequence of time varying images 

proves to be a very important task in machine intelligence in general and computer vision in 

particular. Parametric domain techniques can be successfully used with a number of variants. 

In such methods, the image is transformed into some parameter space and the motion 

detection process is applied in that space. An efficient parametric domain method is the 

Randomized Hough Transform (RHT) [1,2] that uses a random sampling mechanism in the 

image space, scores accumulation in the parameter space, and then bridges between them 

using a converging mapping. The use of such method for motion detection is known as the 

Motion Detection Randomized Hough Transform (MDRHT) [3, 4, 5]. Since random 

sampling is used, the process of establishing correspondence between sets of points 

belonging to the same object in successive motion frames proves to be the most important 

problem in this methodology. Improving the accuracy of correspondence rules will improve 

the performance of the algorithm.  
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In the present work, motion detection was considered through the analysis of a sequence 

of time varying gray level image stream using the RHT algorithm that provides an efficient 

simple non-model based methodology using edge pixels as features. The objective of our 

work is to construct a set of correspondence rules that would maximize the ability of the 

methodology to detect motion parameters for both pure translational and pure rotational 

motions in the case of 2-D rigid objects. Analysis of accuracy and efficiency of 

correspondence is restricted to the cases of two points and three point pairs to select rules 

maximizing the performance.  
 

For that purpose, five different correspondence rules are investigated. The first three are 

2-point rules that were used in previous researches. They measure correspondence through 2-

point x- and y- differences, City Block distances and Euclidean distances, respectively. The 

present work introduces the two remaining rules for the first time. These are 3-point rules that 

measure correspondences through 3-point City Block distances and triangular areas, 

respectively.  
 

We develop a mathematical analysis of the invariance of the five rules given for both 

pure translational and pure rotational motions. Also, a performance parameter is introduced to 

measure the capability of peak detection in the RHT space and to compare the performances 

of the randomized motion detection methodology for the different rules. 
 

For translational and rotational motions, different simulation experiments are conducted 

in order to investigate the dependence of peak detection efficiency on the correspondence 

rule and on the size of the random sample. Investigations are also made of robustness of the 

algorithms under noise conditions, varying angles of rotation, RHT spatial resolution, and 

correspondence tolerance. 

 

2. The Basic MDRHT Algorithm 
 

The Randomized Hough Transform (RHT) was widely used for object detection [6 - 9], 

visual control and medical imaging [10, 11], and motion detection [3 - 5, 12 - 15]. The Main 

idea in using RHT for motion detection is that the parameter space is divided according to the 

displacement of different points in the image and accumulated in the accumulator space to get 

the real displacement of the object being tracked.  
 

Motion Detection Randomized Hough Transform (MDRHT) is a feature based method 

that detects motion of a non-model based 2-D rigid object in a sequence of time varying 

images using the edge pixels as features. This usage of edge pixels helps to avoid overlapping 

and to avoid difficulties faced by some other motion detection methods. Many methods that 

use the feature based approach has been developed using parallel projection, the perspective 

transformation, and both 3-D points and 3-D lines as features. Usually, in these methods the 

correspondence between selected features is assumed to be known. 
 

The method uses Hough transform (HT) and its’ variants, which is considered to be 

flexible since it can work even in noisy and complex images, by randomly picking points pair 

from two images and calculating the transition with them. The use of HT in motion detection 

is not a new idea, but it is time and memory consumptive and needs a relatively short time 
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span between images. It is suitable for finding global features like line and curve segments 

from a static image. An improved method based on the Randomized Hough Transform was 

later developed for motion detection and called MDRHT [3]. 

 

The basic MDRHT algorithm is illustrated as follows: 
 

Algorithm 1: Basic Motion Detection using Randomized Hough Transform 

Assume that there are two gray level image frames: 

1. Two binary edge pictures are formed, B and C 

2. Assuming a 2-point correspondence rule, the correspondence of the edge points in the 

two sets is examined in the following way: 

 Two points (b1, b2) are picked randomly from frame B. 

 A corresponding point pair (c1, c2) is sought from frame C. 

The corresponding pair is any point pair which satisfies a certain 

correspondence rule. Also as an extra or alternative a heuristic 

condition can be included in this correspondence problem. 

3. The transition (dx, dy) is then calculated between the points of the first and second 

images. 

4. The cell A(dx, dy) is accumulated in the accumulator space. 

5. Repeat steps 1 - 4 a suitable number of repetitions. 

 

3. Correspondence Rules 
 

The core of MDRHT is the use of random sampling in the image space, score 

accumulation in the parameter space, and converging mapping as a bridge between the two 

spaces. Around this core, some issues could be implemented in different ways which give 

different variants of the algorithm. 

It is argued that [8, 9] research effort should focus on addressing accuracy instead of 

computational or memory aspects, since they are Hardware problems that could be solved if 

faster and cheaper hardware invented. This implies that we consider the correspondence 

problem as the most important problem in this algorithm. Improving the accuracy of 

correspondence rules will improve the performance of the algorithm and will help improving 

its’ throughput. 
  
3.1 Two-point correspondence rules 
 

Point pairs can be used to detect the correspondence. The rules used to detect this 

correspondence as shown in Table (1) work as follows: 
 

      Rule 1 (Displacement): uses point pairs, (b1,b2) from first image, and (c1,c2) from second 

image. The C-pair will be considered to be correspondent to the B-pair if the x  displacement 

between (b1,b2) is equal to the x  displacement between (c1,c2) and the y  displacement 

between (b1,b2) is equal to the y displacement between (c1,c2). 
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Rule 2 (City Block Distance): uses point pairs, (b1,b2) from first image, and (c1,c2) from 

second image. The C-pair will be considered to be correspondent to the B-pair if the city 

block distance between (b1,b2) is equal to the city block distance between (c1,c2). 

 

Rule 3 (Euclidian Distance): uses point pairs, (b1,b2) from first image, and (c1,c2) from 

second image. The C-pair will be considered to be correspondent to the B-pair if the 

Euclidian distance between (b1,b2) equals the Euclidian distance between (c1,c2). 
 

 

Table (1): Two points correspondence rules 
 

No. No. of points Rule 

1 2 )()(   dydx  

2 2 Equal city block distance: ),( 12121212 ccbb xyxyequal    

3 2 
Equal Euclidian distance: ),( 2

12

2

12

2

12

2

12 ccbb xyxyequal   

 

In the above table, 
  

),(,),( 2211 bbbb yxyx   are the coordinates of the selected B-pair, 

),(,),( 2211 cccc yxyx   are the coordinates of the corresponding C-pair. 

Also, 

|)()(||,)()(| 12121212 ccbbccbb yyyydyxxxxdx  ,   is a tolerance, 

and 

|||,||,||,| 1212121212121212 ccccccbbbbbb xxxyyyxxxyyy   

 
3.2 New three-point correspondence rules 
 

In the present work, we introduce two new correspondence rules using point triples as 

given in Table (2). These rules as specified as follows: 
  

Rule 4 (Triple Point City Block Distance): uses point triples, (b1,b2,b3) from first 

image, and (c1,c2,c3) from second image. The C-triple will be considered to be correspondent 

to the B-triple if the sum of city block distances between (b1,b2,b3) equals the sum of the city 

block distances between (c1,c2,c3). 
 

Rule 5 (Triangle Area): uses point triples, (b1,b2,b3) from first image, and (c1,c2,c3) 

from second image. The C-triple will be considered to be correspondent to the B-triple if the 

area of the triangle formed by (b1,b2,b3) equals to the area of the triangle formed by (c1,c2,c3).  
 

Table (2) Proposed new three-point correspondence rules 

No. No. of points Rule 

1 3 Equal city block distance: ),( 123123123123 ccbb yxyxequal   

2 3 Equal triangle areas: |))det(|,|)det((| CB AAequal  
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In the above table, 
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4. Invariance of correspondence rules 
 

In the following, we investigate the invariance of the different correspondence rules 

under translation and rotation. 
 

4.1 Invariance under translation 
 

When detecting pure translational motion, the rule used to establish correspondence 

between two shapes must be invariant under translation. This ensures that the rule can 

establish correspondence whether the shape is stationary or undergoing translational motion. 

In the following, we investigate such invariance for the five rules given above. To do so, we 

consider a stationary shape in a frame (B), another stationary shape in frame (C) and then 

shape (C) translated by a displacement () in frame (D). Let Rule (0) be the correspondence 

rule applied between (B) and (C), and Rule () be the same rule applied between (B) and (D). 

If Rule () does not change from Rule (0), then the rule is invariant under translation. 
 

To investigate such invariance, let us consider the points (i) and (j) for the 2-point 

algorithms, and (i), (j) and (k) for the 3-point algorithms. Let (f) be a frame (b, or c or d) and: 

fjifijfjifij

fi jffijf

|y - y| = )(y  and  | x- x| = )(x  Also,

)y -(y = (dy)  and   ) x- (x = (dx)
 

 

 

Correspondence rule (1) (2-point equal differences in both x and y): 

)0(  Hence,

 that followsIt 

similarly and

:gives (d)  to(c) fromon  translatiThe

0

0

0

Rule]} < [(dy)] < )]} = {[(dx < [(dy)] < {[(dx)Rule (δul

 = (dy)  and (dy) = (dx)(dx)

dy) -  y) = ( +  y - y = (y (dy) , dx) -  x) = ( +  x - x = (x(dx)

 - (dy) = (dy) and (dy) - (dx) = (dx)where (dx)

]} < [(dy)] < {[(dx)) Rule (

bcbcbdbd

bcbdbcbd

cijdcijd

cbbccbbc

bcbc








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This proves that the correspondence rule (1) is invariant under pure translation. 

 

Correspondence rule (2) (2-point equal city block distances): 

 

)0(

0

0

0

Rule })] < ) + (y)) -  ((x) + (y){[((x

 }  = )] < ) + (y)) -  ((x) + (y)  {[((x) Rule (

Hence, 

)c)d = (yy)c  and  ()d = (xBut  (x

 })] < ) + (y)) -  ((x) + (y){[((x) Rule (

cijcijbijbij

dijdijbijbij

ijijijij

cijcijbijbij













 

This proves that the correspondence rule (2) is invariant under pure translation. 
 

Correspondence rule (3) (2-point equal Euclidean distances): 
 

)0(

0

2222

0

2222

 }  = Rule)] < ) + (y)) -  ((x) + (y) {[((x) Rule (

Hence, 

) = (y)  and  (y) = (x)But (x

 })] < ) + (y)) -  ((x) + (y){[((x) Rule (

dijdijbijbij

cijdijcijdij

cijcijbijbij









 

This proves that the correspondence rule (3) is invariant under pure translation. 
 

Correspondence rule  (4) (3-point equal city block distances): 
 

) Rule ( )   Rule (

) = (y)  (y  ) = (x) (x

 })] < ) + (y))  -  ((x) + (y){[((x) Rule (

)  + (y)  +  (y) = (y)  and  (y) + (x) + (x) = (x)(x

cijkdijkcijkdijk

cijkcijkbijkbijk

fjkfikfijfijkfjkfikfijfijk

0Hence,

andBut

0

Let 

0








 

This proves that the correspondence rule (4) is invariant under pure translation. 
 

Correspondence rule  (5) (3-point equal triangle areas): 
 

)0()(Hence,

)det()det(But

detdet0 0

RuleRule

AA

ε})](A)(A{[)Rule(

cd

cb









 

This proves that the correspondence rule (5) is invariant under pure translation. 
 

4.2 Invariance under rotation 
 

When detecting pure rotational motion, the rule used to establish correspondence 

between two shapes must be invariant under such rotation. This ensures that the rule can 

establish correspondence whether the shape is stationary or undergoing rotational motion.  In 

the following, we investigate such invariance for the five rules given before. To do so, we 

consider a stationary shape in a frame (b), another stationary shape in frame (c) and then 



 

Egyptian Computer Science Journal ,ECS ,Vol.  36 No. 2, May 2012       ISSN-1110-2586 

 

 
 

 

 

- 24 - 

 

 

shape (c) rotated by an angle () in frame (d).  Let Rule (0) be the correspondence rule 

applied between (b) and (c), and Rule () be the same rule applied between (b) and (d). If 

Rule () does not depend on (), (i.e. does not change from Rule (0)), then the rule is 

invariant under pure rotation. Otherwise, the rule in not invariant under rotation and cannot 

be used to establish correspondence in case of rotational motion. 
 

To investigate such invariance, let us consider the points (i) and (j) for the 2-point rules, 

and (i), (j) and (k) for the 3-point rules. Let (f) be a frame (b, or c or d) and: 

fjifijfjifij

fi jffijf

|y - y| = )(y  and  | x- x| = )(x  Also,

)y -(y = (dy)  and   ) x- (x = (dx)
 

 

For simplicity, consider the shape to be a unit circle and the rotation point (xr , yr) to be 

the center of the circle. In this case, the (x,y) coordinates of a point on the shape are simply  

(cos, sin ), where  is the angle between the radial vector to the point and the x-axis. It 

follows that: 

fijfijf

fijfijf

) -  = () - y = (y(dy)

 )θ - θ  = () - x = (x(dx)

 sinsin

    and   coscos
 

 

When the shape is rotated by an angle (), then  →  + . We now investigate the 

invariance of each correspondence rule under such transformation.  
 

Correspondence rule (1) (2-point equal differences in both x and y): 
 

bcdbbd

bcdbbd

0

(dy) (dx) - (dy) = (dy)

 and   (dx) (dx) -(dx) = (dx)

 that followsIt 

  cossin

 and    ,  sincos

:gives (d)  to(c) fromrotation   the, ation    transformUnder the

 where

0

















ccd

ccd

cbbccbbc

bcbc

  + (dy) = (dx)(dy)

  - (dy)  = (dx)(dx)

 - (dy) = (dy) and (dy) - (dx) = (dx)(dx)

]} < [(dy)] < {[(dx))Rule (

 

 

We can see that both (dx)bd and (dy)bd are explicit functions of . 

)Rule(ε]}[(dy)ε]{[(dx))Rule( bdbd 0

 Hence,

  
This proves that correspondence rule (1) is not invariant under pure rotation. 
 

Correspondence rule (2) (2-point equal city block distances): 

)0()(

and   Hence

cossin       

  and  sincosBut  

0 0

RuleRule

)+(y)(x)+(y)(x

| +(dy) = |(dx))(y

| -(dy) = |(dx))(x

 })] < )+(y))-((x)+(y){[((x) Rule (

cijcijdijdij

ccdij

ccdij

cijcijbijbij














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This proves that the correspondence rule (2) is not invariant under pure rotation. 

Correspondence rule (3) (2-point equal Euclidean distances): 

)Rule() Rule (

) + (y) = (x) + (y)(x

 })] < )+(y))-((x)+(y){[((x) Rule (

cijcijdijdij

cijcijbijbij

0 Hence,

 that find  werotation,Under 

0

2222

0

2222









  

This proves that correspondence rule (3) is invariant under pure rotation. 

Correspondence rule (4) (3-point equal city block distances): 

) Rule ( )  Rule (

 ) + (y) (x  )+(y)(x

 })] < ) + (y))  -  ((x) + (y){[((x) Rule (

)+(y)+(y) = (y)(y

)+(x)+(x) = (x)(x

cijkcijkdijkdijk

cijkcijkbijkbijk

fjkfikfijfijk

fjkfikfijfijk

0 Hence,

 .on  dependenceexplicit an  with 

: thatshows (2) rulefor  that similar to analysisAn 

0

      

  and  Let 

0












  

This proves that the rule for algorithm (4) is not invariant under pure rotation. 
 

Correspondence rule (5) (3-point equal triangle areas): 

The triangle formed by the three points (i,j,k) has sides of lengths Sij , Sik  ,  Sjk. 

Let S = (1/2) (Sij + Sik + Sjk) so that the area is given by: 

  A = [S (S - Sij)(S - Sik)(S - Sjk)]
1/2 

The S lengths are all 2-point Euclidean distances that are invariant under rotation as seen in 

rule (3). Hence, the area is invariant as well. It follows that: 

  Rule ()  Rule (0)  

This proves that rule (5) is invariant under pure rotation. 

 

 

 

 

 

 

 

 
Figure (1): Variations for the different rules 
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Figure (1) shows an example of the variations computed for the different rules as a result 

of rotations. The figure shows clearly that only Rule (3) and Rule (5) are invariant under pure 

rotation.  
 

5. Experiments on MDRHT 
 

We have conducted a number of simulation experiments for motion detection using the 

MDRHT methodology in order to test the various correspondence rules and to measure their 

performance for the detection of translational and rotational motions. For this purpose, we 

have designed an algorithm that allows the variation of the correspondence rule, the 

multiplicity of point pairs, and the total number of random trials.  Using this algorithm, we 

have investigated appropriate values for the tolerances used in applying the various 

correspondence rules as well as values to adopt for the accumulator resolution. 
 

5.1 Experimental setup 
 

Two-dimensional accumulators were used for the detection of translational motion in 

the 2-D plane. Figure (2) shows a typical probable instance in the establishment of 

correspondence using a point triplet for translational motion. In Figure (3), a typical 

accumulator display is given for the detection of translation using rule (5). 

 

 

 

 

 

 

 

 

 

 
    Figure (2): Typical translation instance.        Figure (3): Typical accumulator display 
 

For rotational motion detection, we confine the rotation parameters to the rotation angle 

() so that a 1-D accumulator is sufficient. We also confine the correspondence establishment 

to rules (3) and (5) that proved to be invariant under pure rotation. Figure (4) shows a typical 

probable instance in the establishment of correspondence using a point triplet for rotational 

motion. In Figure (5), a typical accumulator display is given for the detection of rotation 

using rule (3). 

 

    

 

 

 

 

 
 

Figure (4): Typical rotational instance.     Figure (5): Accumulator display ( 2/  ) 
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5.2 Measure of peak detection efficiency 
 

In order to compare the motion detection capabilities between the different 

correspondence rules, we need to have a measure of the accumulator peak detection 

efficiency. The accumulator displays shown in Figures (3) and (5) indicate that the peaks 

detecting the motion can be conveniently modelled by a Laplacian probability density 

function (PDF). For the rotational motion, it is a 1-D PDF of the form: 

 

  

 

where φ0 is peak location and b is the scale parameter. Similarly, for translational 

motion, we may use a 2-D distribution in the x-y plane of the form: 

 

 

 

where (x0,y0) is peak location. Obviously, for such distributions the maximum probability 

is at the peak position. Therefore, it is convenient to measure the accumulator peak detection 

efficiency by a parameter maxpρ  . Therefore, we may use: 

r.accumulato in the  trialsofnumber   total theis  and

r,accumulatodetection on  translatiin the sresolution   theare   

r,accumulato detection rotaion    theof resolution  theis  where
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5.3 Results for translational motion peak detection efficiency 
 

A number of simulation experiments have been conducted to investigate the peak 

detection efficiency for translational and rotational motions. We have used 5 algorithms 

corresponding to the 5 different correspondence rules. Typical displays of the 2-D 

accumulator spaces used for detecting translational motion are shown in Figure (6). 
 

We have also conducted a number of experiments to determine appropriate values for the 

accumulator resolution, value of tolerance in the correspondence rules and effect of rotation 

angle on detection efficiency. It is found that the error in the peak positions is minimum for 

accumulator resolutions in the range 0.03 – 0.12, and values of tolerance ε > 0.01. For 

rotational motion, it is also found that such error is almost independent of the rotation angle. 

Accordingly, we have used in most experiments 01.010   and.ΔΔyΔx  
 

Table (3) lists the values of  
1  for different number of trials for each algorithm for 

detection of translational motion. These results are also plotted in Figure (7).  
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(algorithm1, algorithm2, algorithm3) 2-points algorithms 

  

(algorithm4, algorithm5) 3-points algorithms 
 

Figure (6): Typical translation detection accumulator spaces. 
 

Table (3): Dependence of 
1 on NT for the various algorithms for translational motion 

(Accumulator resolution = 0.1, 01.0 ) 
 

NT(x103) 
Algorithm1 Algorithm2 Algorithm3 Algorithm4 Algorithm5 

Rule (1) Rule (2) Rule (3) Rule (4) Rule (5) 

5 0.02 0.1 0.04 0.12 0.36 

10 0.02 0.11 0.03 0.08 0.32 

15 0.0133 0.0867 0.0333 0.08 0.3333 

20 0.01 0.1 0.025 0.075 0.295 

25 0.012 0.112 0.032 0.072 0.296 

30 0.01 0.1 0.03 0.0667 0.2833 

35 0.0114 0.0943 0.0314 0.0686 0.28 

40 0.0125 0.0875 0.03 0.075 0.29 

45 0.0133 0.0867 0.0289 0.0822 0.28 

50 0.014 0.088 0.028 0.084 0.286 

100 0.021 0.084 0.04 0.082 0.3 

200 0.0145 0.0775 0.034 0.0825 0.2925 

300 0.016 0.082 0.0353 0.0793 0.3043 

500 0.015 0.0798 0.0366 0.0786 0.3 
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From the experimental results we may observe that all algorithms typically fluctuate in 

performance at low number of trials (NT) then converge to a stable value of  1 at high NT. 

Algorithms (1) and (3) are both 2-point algorithms and exhibit the lowest performance (1  

values around 2.5%). Algorithms (2) and (4) exhibit almost similar behavior, and at large NT, 

the 1 values are around 8%. Although algorithm (2) is a 2-point algorithm while (4) is a 3-

point algorithm, the similarity in behavior is probably due to the fact that both use equal city 

block distance as a correspondence rule.  

 

Algorithm (5) is a 3-point algorithm and has the highest performance. At large NT, it 

converges to a 1 value of about 30%. The performance is probably a little better for low 

number of trials (about 35%) but overall, it outperforms all other algorithms. In general, rule 

(5) can detect translational peaks with an efficiency that is more than 3 times better than the 

other rules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (7): Peak detection efficiency for translational motion. 
 

 

5.4 Results for rotational motion peak detection efficiency 
 

For rotational motion, the results are confined to Algorithms (3) and (5) since these 

correspond to the rules that are invariant under pure rotation motion. Table (4) lists the values 

of 2  for different number of trials for each algorithm for detection of rotational motion. 

These results are also plotted in Figure (8).  
 

The results show that the two algorithms typically fluctuate in performance at low 

number of trials (NT) then converge to a stable value of 2 at high NT. Algorithm (5) is a 3-

point algorithm with a correspondence rule of equal triangular area. It exhibits a significantly 

higher performance (by a factor of about 8) than the 2-point algorithm (3) with the 

correspondence rule of equal Euclidian distances.  
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Table (4): Dependence of 
2 on NT for the various algorithms for rotational motion. 

( = 90
o
, Accumulator resolution = 0.1 rad., 01.0 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure (8): Peak detection efficiency for rotational motion. 

 

5.4 Effect of noise 
 

A number of experiments have been conducted using frames to which a salt and pepper 

noise component has been added. For noise levels between 2 and 4%, it is observed that the 

algorithm efficiency has not been significantly affected by the noise level. This shows that 

the present algorithm is also robust against noisy frames   

 

NT(x103) 
Algorithm3 Algorithm5 

Rule (3) Rule (5) 

5 0.0040 0.0680 

10 0.0060 0.0620 

15 0.0080 0.0640 

20 0.0085 0.0620 

25 0.0076 0.0612 

30 0.0074 0.0600 

35 0.0072 0.0583 

40 0.0075 0.0550 

45 0.0071 0.0542 

50 0.0074 0.0542 

100 0.0072 0.0570 

200 0.0062 0.0515 

300 0.0066 0.0507 

500 0.0070 0.0526 
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6. Conclusions 
 

In the present paper, we have investigated the effects of using five different 

correspondence rules to be used in MDRHT algorithms. The first three are 2-point rules that 

were used in previous researches. They measure correspondence through 2-point x- and y- 

differences, City Block distances and Euclidean distances, respectively. The present work 

introduced the two remaining rules for the first time. These are 3-point rules that measure 

correspondences through 3-point City Block distances and triangular areas, respectively.  

 

We have developed a mathematical analysis of the invariance of the five rules given for 

both pure translational and pure rotational motions. We have proved that all five rules are 

invariant under translational motion, but only the 2-point rule for Euclidian distances and our 

3-point rule with triangular areas proved to be invariant under rotational motion. 

 

We have conducted a number of simulation experiments for motion detection using the 

MDRHT methodology in order to test the various correspondence rules and to measure their 

performance for the detection of translational and rotational motions. For this purpose, we 

have designed an algorithm that allows the variation of the correspondence rule, the 

multiplicity of point pairs, and the total number of random trials.  Using this algorithm, we 

have investigated appropriate values for the tolerances used in applying the various 

correspondence rules and values for the accumulator resolution. Also, a performance 

parameter is introduced to measure the efficiency of peak detection in the RHT accumulator 

space and to compare the performances of the randomized motion detection methodology for 

the different rules. 
 

For translational and rotational motions, different simulation experiments are conducted 

in order to investigate the dependence of peak detection efficiency on the correspondence 

rule and on the size of the random sample. Investigations are also made of robustness of the 

algorithms under noise conditions, varying angles of rotation, RHT spatial resolution, and 

correspondence tolerance. The results obtained for the translational motion indicated that our 

3-point algorithms are in general superior to the previous 2-point algorithms. In particular, 

algorithm (5) that uses equal triangle areas gave the highest performance, outperforming the 

next in performance (2-point City Block distance) by a factor of almost 3 times. 
 

In order to study the affect of noise on the algorithms’ performance, a salt and pepper 

noise with different levels was added to the frames images. The results for translational 

motion showed that algorithm (5) again has the performance which is three times better than 

other algorithms and proved to be robust against noisy conditions. 
 

Different simulation experiments were also conducted for the case of pure rotational 

motion. The two algorithms that proved to be invariant under rotation (using correspondence 

rules 3 and 5) have been tested for different rotation angles using various numbers of trials 

NT. Also in this case, our 3-point algorithm proved to outperform the 2-point algorithm by a 

factor of almost 8 times. Similar conclusions are obtained for the robustness of algorithm (5) 

under noisy conditions. 
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