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Abstract   

Approximations of signals in signal space are always necessary for noise removal and for 

lossy compression of the signals. Current techniques address the approximation process either 

in the signal space or in its transform space but not in both. A moment-preserving constraint 

can couple both spaces for better evaluation of approximations at nodal signal points. We 

present methods for applying moment-preserving piecewise approximations of signals using 

Linear, Quadratic and Cubic Spline polynomials. Results are given for experiments made to 

approximate 1-D signals, 2-D noisy boundaries and digitized images. In addition, we present 

a moment-preserving approach to the problem of denoising independent components derived 

from the Independent Component Analysis (ICA) of mixtures of noisy source signals. 
 

Results demonstrate higher accuracy of the method compared to approximations 

obtained without moment preservation. 
 

Keywords:  Signal Processing, Image Processing, Pattern Analysis, Piecewise 

approximations, Noisy ICA 

 
 

1. Introduction 
 

Approximations of signals in signal space are always necessary for noise removal and for 

lossy compression of the signals. In the 1-D case, the noisy signal is considered to be a 

function f(x) sampled at a set of distinct points {xi , i = 0 ,1 , .. n}. The objective of an 

approximation method is to find an approximating function g(x) defined at a set of distinct 

nodal points {zj  , j = 0 ,1 ,…., m} , m < n, subject to a certain error minimization criterion. 

The approximated values can be joined using some interpolation technique. Obviously, this 

methodology also applies to 2-D signals or images. 
 

The approximation problem is relevant to many applications in signal processing, pattern 

analysis and image processing, thus advancing a considerable amount of research in this area. 

Existing well known approaches derive the approximations either through constraints in the 

signal domain or in its transform domain but not in both. In the signal domain, several simple 

sub-sampling techniques have been commonly used [1] beside the more complex least 

squares polynomial methodology. Other approaches utilize piecewise linear approximations 

[2] as well as the smoother polynomial splines [3]. In the transform domain, common 

approaches are the FFT, DCT, and KLT transforms [e.g. 4, 5, 6].  
 

More recently, a method developed in [7] approaches the problem by deriving the 

approximation in the signal domain while preserving a finite number of geometric moments 

that are related to its Fourier domain. The method has been applied to piecewise linear 
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approximations. In [8], we have examined how to extend the moment-preserving method for 

1-D and 2-D signals to higher order polynomials. 

 

In the present paper, we present the derivation of the moment preserving method for 

linear, quadratic and cubic spline polynomials. We show results of applying this technique to 

1-D signals, closed binary boundaries and images. In addition, we present a moment-

preserving approach to the problem of denoising independent components derived from the 

Independent Component Analysis (ICA) of mixtures of noisy source signals. 
 

 

2. Theory 
 

    2.1 General 

A random signal with a PDF p(x) has a characteristic function that is the Fourier 

transform of its density function, i.e. 

                                            (1)       
 

 

If Sk represents the k
th

 geometric moment of the PDF then  

     

        (2)  

              

Suppose that the characteristic function has a Taylor-series expansion, then 

 

              (3) 

 

Therefore, if the characteristic function has a Taylor-series expansion valid in some 

region about the origin, it is uniquely determined in this interval by the geometric moments. 

If the moments do uniquely determine the characteristic function (and hence the Fourier 

transform of the density function) then they also uniquely determine the density function. The 

consequence of this uniqueness is that a moment-preserving approximation to the function 

p(x) in the x-domain will also serve as an approximation constraint in the -domain. 
 

2.2  Moment-Preserving approximation 
 

Consider the k
th

 moment of the variable x over the finite interval (i,j) of the function f(x) 

to be Sk(i,j) = Ex[x
k
]i,j . Let  be a scale reduction factor so that x =  y and hence we define a 

scaled moment as 

 

            (4) 

    

With the function f(x) specified by a finite set of discrete points {xi , i = 0 ,1 , .. n}, the 

scaled moment  k  is the sum over all (n) segments (i,i+1) covering the above domain: 

 

          (5) 

 

On the other hand, if we seek an approximating function g(x) defined at a set of distinct 

nodal points {zj  , j = 0 ,1 ,…., m}, then over the interval between two nodal points (p,q) we 
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obtain scaled moments k(p,q) whose sum over the nodal intervals gives the scaled moments 

k. For the moment preserving approximation, we require that  

 

           (6) 

 

The above moment-preserving constraint leads to a system of m+1 equations:  

  

E . G           (7) 

 
where E is an m+1 by m+1 square matrix of coefficients depending on the 

approximating polynomial, and G is a column vector representing the approximations g(zj) to 

the function f(x) at the  nodal points {zj  , j = 0 ,1 ,…., m}. 
     

3. Piecewise linear approximation 
 

Assuming that between the nodal points zp and zq the function is piecewise linear, then 

we can use Lagrange’s classical formula 

 

       (8) 

 

   to compute the k
th

 scaled moment over that region: 
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          (11) 

 

Notice that in the above equation, the values of yj represent the scaled coordinates of the 

nodal points. When the scaled coordinates of the actual function points are used, then we 

obtain the actual scaled moments vector . Accordingly, moment preservation (  =   ) 

leads to the system 

 

           . G = E
- 1          (12) 

 

where the elements of the square matrix E  are given by  e(k,j) = Cj(k,y) 

  
4. Piecewise quadratic approximation 
 

Here, we use equally spaced nodal points with an internal point zr between the points zp 

and zq. With  = (zr - zp ) = (zq - zr ), Lagrange’s formula can  be written in the form: 
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As before, the elements of the matrix E are e(k,j) = Cj(k,y) 
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5. Piecewise cubic spline approximation 
 

Lagrange’s formula for the piecewise linear interpolation in the interval between zp and zq 

may be written in the form: 

 

       
 - a) =  - z)/(z(z - z) and b =  - z - z)/(za = (zwith

)) + b g(zz(z) = a g(g
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In a cubic spline approximation, we add a cubic polynomial whose second derivative 

varies linearly over the (p,q) interval and with zero values at zp and zq leading to 
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       p and q are the second derivatives at the two nodal points. 
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where  Bq(b,k,t) is as defined for the linear case.  Therefore, the problem is similar to the 

linear case except for the term Uk(p,q). Evaluation of this term gives 
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Accordingly, moment preservation (  =   ) leads to the system 

 

         )  + U - U. ( G = E
-

1
       (19)   

 

In the above equation, E and  are respectively the coefficient matrix and moments vector for 

the piecewise linear approximation, while the vectors U and U are computed using the 

nodal points and the actual function points, respectively.   

 

6. Experimental results on signal approximation  
 

6.1 1-D signal approximation 
 

The above moment-preserving (MP) method has been applied to obtain piecewise 

approximations for various 1-D signals f(x). For a given approximation, nodal points {zj , j = 

0,1,…., m}were chosen to be evenly spaced across the x-space. The vector of approximants G 

at those points was computed using the linear, quadratic or cubic spline methods outlined 

above and an approximation g(x) to the function is obtained by the respective interpolation 

method. For comparison with usual interpolation techniques, an approximation h(x) was also 

obtained using the function values f(zj). We have used the mean-squared error (MSE) as a 

measure of the error norm between f(x) and each of the approximations g(x) and h(x).  

 

As an example, we show here the results for the function  

  

        f(x) = 2sin(0.2 x) + 5cos(0.3 x) + w r       (20) 

 

where r represents additive Laplacian random noise and w is an amplitude factor. For the 

above example, we have used an x-domain covering 10 blocks with 1601 function points and 

5 nodal points in each block (i.e. one nodal point every 40 function points). For more 

accuracy and to reduce the need for reconditioning the matrices in the inversion process, we 

have used a scale factor    = standard deviation of x over the block. 

 

As an example, Figure (1) compares the obtained piecewise approximations without and 

with moment-preserving constraint for the linear, quadratic and cubic spline approximations. 

 

 

Figure (1): Piecewise linear, quadratic and cubic spline approximations. 
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To examine the effect of noise on piecewise approximations, we have computed the 

Mean Square Error (MSE) between the original noisy signals and the corresponding ones 

derived by appropriate interpolation from the values at the knot points. We have also 

included for comparison those function values derived by interpolation of knot point values 

obtained from a filtered set using a 5-point Gaussian filter.  

 

Figure (2) shows the MSE as a function of signal-to-noise ratio (SNR) for the linear 

approximation. The solid and dotted curves relate to moment-preserving and usual 

interpolation MSE, respectively, while the dashed curve represents the results from the 

Gaussian filter.  
 

Figure (2) clearly shows the expected decrease of the MSE by increase of the SNR level 

and also clearly illustrates how the MSE is significantly decreased, even at high noise level, 

by imposing moment preservation. It also shows that the MP approximation is superior to the 

usual interpolation methods and also to Gaussian filtering of the signals. Similar results are 

obtained for linear and cubic spline approximations. 

 

 

 

 

 

 

 

 

 

 

 

Figure (2): MP and usual linear approximations.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

  Figure (3): Comparison between the three MP approximations 
 

In Figure (3), we show the results for the MSE obtained for the three different moment-

preserving approximations at different noise levels. The results indicate that the quadratic 

approximation is better than the other two. Although cubic splines produce smoother 
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approximations on smaller x-scales, higher accuracy is obtained with the quadratic 

approximation on larger scales. 
 

In general, the moment preserving methods given here prove to be able to achieve high 

packing ratios (e.g. 1/40) with high reconstruction accuracy and also to denoise the signals.  
 

6.2 2-D closed boundaries 
 

We have also applied the present methodology to noisy closed binary boundaries by 

obtaining their r() signatures and computing the approximations for the resulting 1-D 

signatures. The -space, normalized to {0,2}, is divided into 8 sectors. In each sector, one 

nodal   point is selected every 40 points. 

  

 

 

 

 

 

 

 

 

Figure (4): Samples of approximations of noisy closed boundaries 

 

A sample of the results obtained for a noisy closed boundary using usual interpolation 

and moment-preserving quadratic approximation is shown in Figure (4). The problem with 

using a piecewise approximation without moment preservation is quite clear in the presence 

of significant noise levels. Values of the function at the nodal points could well be extremum 

points of noise amplitude leading to fluctuations between these points. The results shown in 

the figure indicate that using MP approximations is clearly superior to the usual interpolation 

methods.  
 

A typical dependence of the MSE on the noise level in a boundary is shown in Figure 

(5).  It can also be seen from this figure that imposing the moment-preserving criteria leads to 

a significant reduction in the MSE resulting from a high level of noise on the boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5): Typical MSE graph for boundary approximation. 
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It should be noted that the degree of accuracy of moment-preserving approximation for 

noisy boundaries does not depend strongly on the degree of the approximating polynomial. 

The results we obtained show that the MSE for the same noise level will not differ 

significantly between linear, quadratic and cubic spline approximations. Therefore, a low 

order polynomial with moment preservation can serve to define the skeleton of a noisy shape 

to a degree of accuracy significantly higher than the usual piecewise interpolation techniques. 

 

 Figure (6) shows some examples of skeleton detection using quadratic moment-

preserving piecewise approximations. Again MP methods prove to be able to achieve high 

packing ratios (e.g. 1/40) with high reconstruction accuracy and significant denoising of the 

noisy closed boundaries.  

 

 

Figure (6): Examples of skeleton detection from noisy  boundaries using quadratic 

moment-preserving approximations. 

 

 

7. Approximation of Digitized Images 
 

An image, considered as a matrix of pixel values, can be approximated to achieve lossy 

compression. The most efficient technique used so far is the Discrete Cosine Transform 

(DCT) which operates in the frequency domain rather than the spatial domain of the image. 

The usual method for applying the DCT is to process image blocks of size 8 x 8 pixels using 

a 2-D DCT. A zigzag mapping is used to preserve DCT coefficients of maximum variance 

while setting the rest of the 64 coefficients to zero.  
 

Beside its low computational complexity, the advantages of using the DCT is that it 

packs the information in the maximum variance coefficients and that it minimizes the 

boundary discontinuities between the blocks. 
 

In order to apply moment-preserving techniques to a digitised image, we use a piecewise 

approximation in the spatial domain. Block processing can be used after mapping the block 

pixels into a 1-D vector from which nodal points can be selected for the approximation 

process using the methods developed in the present work. 
 

We have experimented with different sub-image geometries and have selected column 

processing as the block processing method. In this case, a block is chosen to be a sub-column 

with a number of pixels depending on the degree of variance in the column. As an example, 

we have used a block size of 17 pixels with 5 nodal points (one nodal pixel every 4 pixels).  

The sample image whose results are show here is a 256 grey level image of size 256 x 256 

pixels (Figure (7a)). 
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Using usual quadratic interpolation and moment-preserving quadratic approximation, the 

resulting images are shown in Figure (7b) and Figure (7c), respectively. The corresponding 

MSE obtained for the two approximations are 0.0037 and 0.0023, respectively. 

 

 

 

 

 

 

 

 

 

         (a) Original Image           (b) Interpolation        (c) MP approximation 

 

Figure (7): Image quadratic approximations 

 

This corresponds to a reduction of about 38% in the MSE and is also apparent from 

comparing image 7(b) with image 7(c). It is therefore evident that the use of the moment-

preserving approximation significantly enhances the quality of the image relative to the usual 

interpolation method.  Similar conclusions have been obtained from the use of the lower 

order (linear) approximating polynomial.  

 

In order to compare the present spatial approximation method with frequency domain 

processing, we have used the DCT with a block size of 8 x 8 pixels and preserving the 

highest variance K coefficients of the zigzag mapped 64 coefficients for each block. We have 

also processed the blocks after adding N nodal coefficients from the remaining (64 – K). 

These nodal points have been samples every 4 coefficients and their values have been 

determined by a moment-preserving quadratic method. With K = 12, and N = 3, the packing 

ratio is approximately comparable to the case of spatial processing shown above. 

 

Figure (8) shows the reconstructed images using the above parameters, and Table (1) 

gives the MSE for different values of K and N. 

 

 

 

          

 

 

 

 

 

 

           (a) DCT, K=12, N = 0   (b) DCT, K=12, N=3 

 
Figure (8) DCT Processing without and with N moment-preserving quadratic nodal points. 
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It is to be noted that the MSE of 0.0023 obtained for quadratic spatial processing 

(corresponding to image 7(c)) is quite close to the value of 0.0022 obtained from the DCT 

with K = 12 and N = 3 moment preserving quadratic nodal points.  This indicates that 

moment-preserving approximations of images in the spatial domain can compete with 

transform methods such as the DCT as far as packing efficiency is concerned. However, we 

must recognize the advantage of low computational complexity offered by the DCT relative 

to moment-preserving spatial processing. This is in view of the latter methods being 

dependent on matrix inversion computations that increase their computational cost for image 

approximations. 

  
Table (1) MSE of DCT Processing for Different Packing Parameters (x 10

– 4
)  

 

 

K 

 

8 

 

8 

 

12 

 

12 

 

16 

 

16 

 

N 

 

0 

 

3 

 

0 

 

3 

 

0 

 

3 

 

MSE 

 

 

30 

 

26 

 

25 

 

22 

 

19 

 

19 

 

8. Denoising Independent Components in noisy ICA 
 

8.1 Noisy ICA 
 

In order to generate Independent Components (IC’s) from a matrix X representing the 

mixture of independent sources, we consider the ICA instantaneous linear noiseless mixing 

model represented by: 

 

  X = A S,          (21) 

 

where S is a random matrix of hidden sources with mutually independent components, 

and A is a non-singular mixing matrix. Given X, the basic problem is to find an estimate Y of 

S and the mixing matrix A such that: 

  

 Y = W X = W A S = G S ≈ S,        (22) 

 

where W = A
-1

 is the unmixing matrix, and G = W A is usually called the Global Transfer 

Function or Global Separating-Mixing (GSM) Matrix. The linear mapping W is such that the 

unmixed signals Y are statistically independent. However, the sources are recovered only up 

to scaling and permutation. In practice, the estimate of the unmixing matrix W is not exactly 

the inverse of the mixing matrix A. Hence, the departure of G from the identity matrix I can 

be a measure of the error in achieving complete separation of sources. 

 

The case of noisy ICA where source noise is additive can be modelled in a way similar to 

the noiseless model. In this case we may write: 

 

 X = A (S + n) =   A U        (23) 
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In this model we assume that the noise n is independent from the sources S and we may 

consider the special but not uncommon case of a noise covariance of the form σ
2
 I so that the 

noisy sources U are still non-gaussian and independent. In this case, the U matrix can be 

estimated by ordinary ICA methods.  Since noise is independent of the sources, it is then 

possible to use a method for denoising the noisy sources U. In our case, we propose to use a 

moment preserving (MP) approximation to achieve such denoising process. 

 

The estimation of the unmixing matrix W cannot be done in closed form. Instead, solution 

methods are based on finding maxima or minima of some objective function [9, 10, 11]. The 

most two famous methods seek an estimate of W either based on maximizing the negentropy 

(negative entropy) or by using Maximum Likelihood Estimation (MLE). Such approaches 

require that the solution advances iteratively in steps starting from some initial estimate until 

it converges to the final solution. Learning from the data is required in each of these steps 

leading to essentially neural unsupervised learning algorithms. 

 

8.2 The neural learning algorithm 

 
For computing the noisy independent components U from the observed mixtures X, we adopt 

the modified algorithm given by [12] which is based on the Fast ICA algorithm originally 

given by [13]. Basically, the algorithm uses a fixed-point iteration method to maximize the 

negentropy using a Newton iteration method. We assume that the mixture matrix X is of m 

separate sequences each of length n samples. Such matrix is to be pre-processed by centering 

followed by whitening or sphering to remove correlations.  

 

Centering removes means via the transformation X←X - E{X} and whitening is done using a 

linear transform (PCA like) Z = VX  where V is a whitening matrix. A popular whitening 

matrix is V = D
-1/2

 E
T
, where E and D are the eigenvector and eigenvalue matrices of the 

covariance matrix of X, respectively. The resulting new matrix Z is therefore characterized by 

E{ZZ
T
} = I  and E{Z} = 0. After obtaining the unmixing matrix W from whitened data, the 

total unmixing matrix is then W ← W V. The algorithm estimates several or all components 

in parallel using symmetric orthogonalization by setting W ← (W W
T
)
-1/2

 W in every 

iteration. 

 

In this modified version of the algorithm, the performance during the iterative learning 

process is measured using the matrix G = W A, which is supposed to converge to a 

permutation of the scaled identity matrix at complete separation of the IC’s. This is done by 

decomposing G = Q P, where P is a positive definite stretching matrix and Q is an orthogonal 

rotational matrix. The cosine of the rotation angle is to be found on the diagonal of Q so that 

a convergence criterion is taken as Δ |diag(Q)|min <  ε, where ε  is a threshold value. Also, 

In this algorithm,  we use the performance (error) measure, E3 introduced in [12]: 
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where gij is the ij
th

 element of the matrix G of dimensions m x m, Mi = maxk | gik | is the 

absolute value of the maximum element in row ( i ) and Mj = maxk | gkj | is the corresponding 

quantity for column ( j ). It is shown in [12] that the index E3 is more precise than the 

commonly used E1 and E2 indices [e.g., 12] and is independent of the matrix dimensions. It 

is also normalized to the interval {0,1}, the greater the value of E3, the worse is the 

performance. 

 

 

 

The algorithm is summarized in the following steps: 

 

 Preprocess mixtures X to get Z  

 Choose random initial orthonormal vectors wi to form intial W and random A 

 Set Wold ← W 

 Iterate: 

1. Do Symmetric orthogonalization of W  by setting W ← (W W
T
)
-1/2

 W 

2. Compute dewhitened matrix A and new G = W A and do polar 

decomposition of G = Q P  

3. Compute error E3 

4. If not the first iteration, test for convergence:  Δ | diag(Q) |min <  ε  
5. If converged, break. 

6. Set Wold ← W 

7. For each component  wi of W, update using learning rule 

wi   E{z f (wi z)} – E{ f ’ (wi z)} wi 

 After convergence, dewhiten using W ← W V 

 Compute independent noisy components U = W X 

 

Algorithm (1): ICA algorithm for many components 

  
In step 7 in the iteration loop, z is a column vector representing one sample from the whitened 

matrix Z,  f (y) is a non-linearity function, f
 
‘(y) is its derivative and the expectation is taken as 

the average over the n samples in Z. 

 

The non-linearity f (y) is essential in the optimization process and for the learning rule that 

updates the estimates of the unmixing matrix W and, overall, it is important for the stability 

and robustness of the convergence process. It is common to use non-linearities (NL’s) f(x) 

that are derived from assumed source models such that: 

  
)x(p

x/)x(p
)x(f


         (25) 

where p(x) is the PDF of the source [14]. Representative source models with symmetrical 

unimodal PDF’s are simple to analyze statistically and lead to computationally efficient 

algorithms. As an example, the source PDF p(x) = 1/cosh x leads to the general purpose 

function f(x) = tanh(x). Such unimodal source distributions provide acceptable performances 

in the case of Blind Source Separation (BSS) of super-gaussian sources.  
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8.3 Experiments on denoising independent components 
 

We have conducted a number of experiments to test the process of obtaining the noisy 

independent components (IC’s) from a noisy mixture of signals and then denoising these IC’s 

using moment preserving (MP) approximations as outlined before. For the purpose of these 

experiments, we have chosen noisy source signals Ui , i = 1..m, with m = 5 sources each of 

length N = 1201 samples as follows: 

 

function periodic noiselessArbitrary  )(

)(

040cos020sin3)(

010cos0050sin3)(

030cos3020sin)(

5
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3

3

2

2

1

=xU

r= wxU

rwx).(x).(= xU

rwx).(x).(= xU

rwx).(x) + .(= xU







      (26) 

where x =0,1,......N-1 

 

For the above signals, the noise vector ni = w r, where w is a noise weight factor and r is a 

random Laplacian noise component with probability density function (PDF):  

 

              (27) 

 

where b is the scale parameter and μ is the location parameter. The random Laplacian variates 

r  have been generated using the relation: 

 

           (28)  

     

where R is a uniform random variate over the interval {-1/2 , +1/2}. 

The noisy signals (26) are all non-gaussian, and their normalized kurtosis are calculated using 

the relation: 

3
}{

}{
)(

22

4


SE

SE
Skn          (29) 

From the kurtosis, it is found that all generated sources are super-gaussian except S1(x) which 

is sub-gaussian. Hence it is found convenient to use f(x) = tanh (x) as a non-linearity in the 

ICA algorithm. 

 

The mixed noisy signals X = A U have been obtained from the noisy sources (26) using a 

random initial mixing matrix A. Figure (9) shows these mixtures using a noise weight w = 

1.0. 
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Figure (9): The mixed signals X 

 

Using the ICA algorithm given above, we obtained estimates of the noisy IC’s U as shown in 

Figure (10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (10): The noisy IC’s U 

 

We have performed the denoising process on the above shown IC’s for U1, U2 and U3 using  

a quadratic moment preserving (MP) approximation with 40 blocks for U1 and 30 blocks for 

each of U2 and U3 and 11 knot points per block for all of them. In each case, the denoised 

signals are obtained by quadratic interpolation between the knot points followed by a 5-point 

Gaussian filtering to remove discontinuities between the different blocks. The denoised IC’s 

obtained by this method are shown in Figure (11). 
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Figure (11): Denoised IC’s S 

 

It can be seen from the above figure that the MP approximation has achieved a satisfactory 

denoising of the IC’s. 

9. Conclusions 
 

Moment-preserving piecewise approximations have been derived for linear, quadratic and 

cubic spline polynomials. The application of such approximations to noisy 1-D signals and to 

noisy 2-D boundaries has proven to be superior to the use of ordinary interpolation methods, 

especially for high level noise content.  In case of 1-D signals, the quadratic moment-

preserving approximation is more accurate than the other two polynomial approximations. 

For 2-D boundaries, the accuracy does not depend significantly on the degree of the 

polynomial used. High packing ratios (e.g. 1/40) can be achieved with high reconstruction 

accuracy.  

For image approximation, spatial moment-preserving methods can compete with the efficient 

frequency domain DCT processing at comparable packing ratios. However, DCT methods 

have the advantage of lower computational complexity. 

We have applied the moment-preserving piecewise approximation methods to the problem of 

noisy ICA. Results of experiments also prove that such methods are efficient in denoising 

independent components obtained from mixtures of noisy sources. 
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