
Egyptian Computer Science Journal, ECS, Vol. 36 No. 3, September 2012 ISSN-1110-2586

-54-

Parallel RHSEG for Hyperspectral Image Analysis Using GPUs

Mahmoud Ahmed Hossam, Hala Mousher Ebied,

 Mohamed Hasan Abdel-Aziz and Mohamed Fahmy Tolba
Faculty of Computers and Information Science, Ain-Shams University, Cairo, Egypt

Mahmoud.hossam@ gmail.com, hala_mousher@hotmail.com

Abstract

Power consumption and weight are important factors to be considered when building

onboard hyperspectral image analysis systems. While power consumption and weight of

computer clusters are hardly suitable to onboard processing systems, graphics processing

units (GPUs) provide the solution. GPUs are parallel systems which can provide a high

computational performance at a lower cost. In this paper, one investigates a preliminary

parallel GPU-based implementation of recursive hierarchical segmentation algorithm

(RHSEG), which is one of the latest image analysis techniques used by National Aeronautics

and Space Administration (NASA). The key aspect of RHSEG is that it combines region

growing segmentation, which produces spatially connected region objects, with region object

classification, which groups sets of region objects together into region classes. The proposed

parallel RHSEG algorithm has been implemented using NVidia’s compute device unified

architecture (CUDA). This paper shows that implementing the RHSEG algorithm on GPUs

achieved an average processing speedup of 1.6 times over the sequential CPU

implementation.

Keywords: Hyperspectral Analysis, clustering, GPU, RHSEG algorithm

1. Introduction

Hyperspectral imaging is a technique that has gained popularity in remote sensing

research, satellite Imaging and aerial reconnaissance. Most applications of this emerging

technology require timely responses for swift decisions which depend upon high computing

performance. Examples of these applications include target detection of military and

defense/security deployment, urban planning and management, risk/hazard prevention and

response, including wild-land fire tracking, biological threat detection, monitoring of oil spills

and other types of chemical contamination.

Hyperspectral images contain a large number of measured wavelength bands, so they

provide plenty of spectral information to identify spectrally unique materials. Hyperspectral

image analysis algorithms naturally integrate the wealth of spatial and spectral information

contained in the data by treating the input volume as an image cube made up of spatially

arranged pixel vectors [1].

Egyptian Computer Science Journal, ECS, Vol. 36 No. 3, September 2012 ISSN-1110-2586

-55-

The literature contains a lot of research on hyperspectral analysis techniques. However,

they can be grouped under these approaches [3]: per-pixel analysis, mixed-pixel analysis and

object-based image analysis. Of these major approaches, there exist many supervised and

unsupervised classification / segmentation algorithms [4] and spectral mixture analysis

algorithms [5]. The choice of what techniques to follow and use depends on what is the

objectives of the analysis for this paper, one is interested in object based image analysis

(OBIA) techniques, such as RHSEG [6]. RHSEG technique tends to produce [7] [3] better

results on high spatial resolution images and more useful information about objects and

regions in the image. The technique is currently implemented sequentially for CPUs and in

parallel for cluster of CPU processors. However, in this paper, one introduces a GPU

implementation of the technique.

Hyperspectral algorithms are naturally suitable for parallelization: either across pixel

vectors, or across tasks. Commodity CPU systems (e.g. computer clusters) can be used for the

parallelization of these algorithms. However, these systems are generally expensive and

difficult to adapt to onboard remote sensing data processing scenarios, in which low-weight

and low-power integrated components are needed to reduce mission payload [1]. Since the

emergence of programmable graphics processing units (GPUs) as a low-power low-cost

platform for high performance computing, GPUs gained the attention of many researches in

increasing the number of research fields [8].

Hyperspectral imaging algorithms can benefit from GPU hardware, thus taking

advantage of the compact size and relatively low cost of these units. Low-weight integrated

components such a GPUs are desirable to reduce payload and data transmission overheads in

onboard processing, and to satisfy the high computational requirements needed in many

Earth-observing missions.

In this paper, one provides a preliminary GPU-based implementation of recursive

hierarchical segmentation (RHSEG), which is a well-known hyperspectral image analysis

algorithm used by NASA. The key aspect of RHSEG is that it combines region growing

segmentation, which produces spatially connected region objects, with region object

classification, which groups sets of region objects together into region classes. The proposed

parallel RHSEG algorithm has been implemented, using NVidia’s compute device unified

architecture (CUDA).

The remainder of the paper is organized as follows. Section 2 gives a survey of the

literature and related work regarding one’s research. Section 3 explains the idea of RHSEG

algorithm. Section 4 describes in detail the parallel implementation of RHSEG algorithm,

using GPUs. Section 5 discusses the results provided by both serial and parallel RHSEG

implementation from the viewpoint of parallel performance on selected hardware system.

Finally, Section 6 concludes with some remarks and provides hints at future work.

Egyptian Computer Science Journal, ECS, Vol. 36 No. 3, September 2012 ISSN-1110-2586

-56-

2. Related Work

A lot of research work has been done before regarding hyperspectral image analysis.

Digital analysis techniques can be divided into two approaches: supervised classification, and

clustering or unsupervised classification. Supervised classifiers faces limitations, such as the

limited availability of training samples [4] for hyperspectral data; therefore one decided to

focus one’s work on clustering and unsupervised algorithms.

Unsupervised techniques fall under two main categories: per-pixel analysis and mixed-

pixel analysis [3] (or spectral unmixing). Per-pixel analysis is concerned with relating each

pixel of the image to only one class or segment. On the other hand, mixed-pixel analysis

assumes that each pixel vector is related to multiple underlying materials, so it is concerned

with relating each pixel of the image to multiple classes not only one class. Either for per-

pixel or mixed-pixel analysis, in many cases, the use of contextual or spatial classifiers

provide better classification accuracies [3] [9], such as Markov Random Field-based (MRF)

contextual classifier and automated morphological end-member extraction (AMEE).

Recently, with the increase of spatial resolutions of new sensors, object-based image

analysis [3] (OBIA) has emerged as a new approach to image analysis. In object-based image

analysis, image segmentation is applied to merge pixels into objects and classification is

conducted based on the objects, instead of an individual pixel. This new approach is

becoming more popular compared to traditional pixel-based image analysis [7] because of its

efficiency with high spatial resolution images. Recursive Hierarchical Segmentation RHSEG

[6] is an (OBIA) technique used by NASA as a starting point to facilitate moving from pixel-

based image analysis to OBIA. The main advantages of RHSEG are: (1) grouping of spatially

connected region objects into region classes, and (2) production of a hierarchical set of image

segmentations.

There have been many efforts in the literature for implementing analysis techniques for

different parallel architecture like FPGAs [10] [11] and computer clusters [12] [13]. Besides,

GPU implementations of several methods has been reported [14], such as GPU (AMEE),

GPU Pixel Purity Index (PPI), GPU N-FINDR, GPU iterative error analysis (IEA), GPU

orthogonal sub-space projection (OSP) and Matlab Hyperspectral Image Analysis Toolbox

(HIAT) on GPU [15]. RHSEG has a parallel version for computer clusters [16]. However, this

paper is considered the first step towards a GPU implementation of RHSEG.

3. RHSEG Method

RHSEG is a hierarchical segmentation and region growing method. It is defined as a set

of several segmentations of the same image at different levels of detail in which the

segmentations at coarser levels can be produced from simple merges of regions at finer levels.

RHSEG is based on HSWO (Beaulieu, & Goldberg 1989) [17] which can be summarized in

three steps:

Egyptian Computer Science Journal, ECS, Vol. 36 No. 3, September 2012 ISSN-1110-2586

-57-

1- Initialize the segmentation by assigning each image pixel a region label. If a pre-

segmentation is provided, label each image pixel according to the pre-segmentation.

Otherwise, label each image pixel as a separate region.

2- Calculate the dissimilarity value between all pairs of spatially adjacent regions, find

the pair of spatially adjacent regions with the smallest dissimilarity value, and merge

that pair of regions.

3- Stop if no more merges are required. Otherwise, return to step (2).

The hierarchical segmentation (HSEG) algorithm (Tilton, 1998) [18] adds a new feature

to HSWO, which differs from the latter in one major aspect. As opposed to HSWO, the

HSEG algorithm allows for the merging of non-adjacent regions controlled by the “spectral

clustering weight” input parameter. Using this parameter, one is free to choose how HSEG

merges regions, by only merging adjacent regions, by equally merging spatially adjacent and

non-adjacent regions, or finally by mixing the merging of adjacent and non-adjacent regions.

HSEG also provides the selection of several dissimilarity functions like Euclidean distance (2-

Norm), spectral information divergence (SID), spectral angle mapper (SAM), and band

summed mean squared error (BSMSE).

Because HSEG is computationally intensive, the recursive approximation RHSEG has

been developed. Figure (1) shows a flowchart for RHSEG method. To completely understand

RHSEG, it is also essential to understand the idea of HSEG algorithm. HSEG is a region

growing algorithm. Figure (2) shows an outline of its main procedures. HSEG is an iterative

region merging process, initialized with every pixel as a region. In each step, dissimilarity

value is calculated for each pair of spatially adjacent regions. The pair of regions with

smallest dissimilarity value is chosen for merging, and then the new merged region replaces

them. This process continues until the desired number of regions (or segments or classes) is

reached.

4. Parallel GPU Implementation

For one’s preliminary parallel RHSEG implementation, one has some restrictions applied

to one’s implementation, which are planned to be removed in future work. For this paper, the

intention was focused on proving the concept first. These restrictions are (1) we assume that

always the “spectral clustering weight” parameter is always 0, so that only spatially adjacent

regions are merged in the same class, and (2) we assume that any image is a square and its

width or height is an even number or a power of 4 (i.e. 128, 256, 420), so that image padding

is not needed. Hyperspectral image is transferred to GPU memory, using CUDA memory

copy APIs. Moreover, data structures that hold information for all regions information and

corresponding spectral statistics are initialized and then reside in GPU memory till the

termination of the GPU execution. In this paper, square root of band sum mean squared error

(square root of BSMSE) is used for dissimilarity calculation. This is given between any two

regions i and j in an image of B bands by:

Egyptian Computer Science Journal, ECS, Vol. 36 No. 3, September 2012 ISSN-1110-2586

-58-

(1)

where and are the mean values for regions i and j in spectral band b, respectively. ni

and nj are the number of pixels in regions i and j respectively. The researcher’s GPU

implementation is based on distributing the process of dissimilarity calculation on GPU

threads. Figure (3) shows the Parallel implementation of RHSEG on GPU.

Each GPU thread is responsible for a corresponding region from the image. For example,

if image has 1024 regions, 1024 GPU threads will be initialized, each thread will calculate the

dissimilarly value for every adjacent region, and then terminates. After the calculation of all

dissimilarly values and all threads terminate, a parallel reduction step is used to find he

minimum value. RHEG then continues execution normal. Figure (4) shows the steps of

copying image data from CPU to GPU memory. At the deepest level of recursion, the current

image is divided into 4 quarters, and then HSEG is executed for each quarter after transferring

it to GPU memory, sequentially.

NVIDIA CUDA [19] technology is used for the implementation of GPU RHSEG.

Compute device unified architecture (CUDA) is a unified GPU computing platform for any

CUDA enabled device. It enables the developer to easily write parallel applications following

stream computing fashion, in which single routine called kernel, is executed over multiple

data streams in parallel. Scalability issue is maintained automatically by CUDA thread

scheduler, which detects the number of available GPU multiprocessors and schedules the

desired number of threads to run in parallel over these multiprocessors.

Figure 1: Flowchart of RHSEG method

Egyptian Computer Science Journal, ECS, Vol. 36 No. 3, September 2012 ISSN-1110-2586

-59-

Figure 2: Outline of HSEG method

Egyptian Computer Science Journal, ECS, Vol. 36 No. 3, September 2012 ISSN-1110-2586

-60-

Figure 4: steps of copying image data from CPU to GPU memory.

Figure 3: Parallel RHSEG implementation

Egyptian Computer Science Journal, ECS, Vol. 36 No. 3, September 2012 ISSN-1110-2586

-61-

Figures (5) and (6) show the CPU and GPU code responsible for the calculation of

dissimilarity values. Figure (6) shows the CUDA kernel that performs dissimilarly values

calculation. In figure (5), method doStep() contains the 2 nested loops that measures the

dissimilarity for each region/adjacent-region pair. The first loop traverses all regions, the

second loop traverses each neighbor region for the current region. For every pair of region-

neighbor, dissimilarity is computed by calling measureDissimilarity() method.

In figure (6), method DeviceCalcAllDissims() contains GPU kernel launch instruction,

that launches parallel kernel method kernel_compute_dissim that calculates dissimilarity

values for all regions in m_dev_RegionKeys and their neighbors in

m_dev_pRegionAdjancencies. All computed dissimilarities are stored in m_dev_pDissims

matrix which is later used in the parallel reduction that finds the minimum dissimilarity value.

It is required, after each region merge execution, to update GPU memory by copying

data of the new merged region to GPU memory. Although HSEG is executed at all recursion

levels of RHSEG, one executes HSEG on GPU only at the deepest level of recursion that is

Figure 5: CPU dissimilarity calculation

Egyptian Computer Science Journal, ECS, Vol. 36 No. 3, September 2012 ISSN-1110-2586

-62-

when the image is no longer divided into 4 sections. Any execution of HSEG at higher

recursion level is executed on CPU thread not the GPU, as one found from experiments that at

higher recursion levels and with reduced number of regions, CPU implementation matches or

surpasses the speed of the GPU implementation.

GPU has several kinds of memory: global memory, shared memory, constant memory,

and cache memory in some of the high end models. Shared and constant memory is faster

than global memory. These memory types vary in capacity and bandwidth, and can be used in

more optimization of applications. However, in this paper, GPU global memory is the only

one used.

Figure 6: GPU dissimilarity calculation

Egyptian Computer Science Journal, ECS, Vol. 36 No. 3, September 2012 ISSN-1110-2586

-63-

5. Experiments and Results

For the data set, one used the Indian Pines AVIRIS hyperspectral data set that is

available for request from NASA JPL website (www.jpl.nasa.gov). Figure (7) shows Indian

Pines AVIRIS hyperspectral image. GPU RHSEG is experimented using ddifferent sizes

128x128, 256x256 and 420x420 pixels of the original Indian Pines image.

For any image size, the number of bands is 220 bands. For each image size, data was

cropped from the large image, not scaled.

 The parallel execution of RHSEG algorithm has been tested on NVIDIA GeForce 8800

GT, which consist of 112 processing cores each operating at 1500 MHz, with 512 MB

GDDR3 256-bit memory interface and which operates at 900 MHz, that is capable of 57.6

GB/sec memory bandwidth. The sequential execution was tested on Intel Core2 CPU with

2400 MHz, 256 K.B. L1 and 8 M.B. L2 cache memory. Figure (8) shows both classification

result and ground truth images.

Figure 8: a) Indian Pines Data Set RGB image of size 128x128 pixels, b) the classification result image

consists of 20 classes and c) the ground corresponding ground truth image of 16 classes

Figure 7: Indian Pines Data Set, the image consists of 220 spectral bands.

http://www.jpl.nasa.gov/

Egyptian Computer Science Journal, ECS, Vol. 36 No. 3, September 2012 ISSN-1110-2586

-64-

Table 1 summarizes speedup results. The experiment results show the speedups of

RHSEG GPU implementation over CPU implementation. The speedup is computed by

dividing CPU running time by GPU running time. GPU running time includes the memory

copy time between main memory and GPU memory. For example, for 420x420 image size,

the RHSEG CPU execution time was 57750 seconds, while the RHSEG GPU execution time

was 36465 seconds. An average speed up of 1.6 times on GPU implementation over the

sequential CPU implementation is achieved.

Image Size (size in M.B.) Average GPU

Speedup

128x128 (13 MB) 1.3

256x256 (55 MB) 1.65

420x420 (148 MB) 1.58

6. Conclusions and Future Work

This paper introduced the first step to parallelize RHSEG technique which is a well-

known hyperspectral object-based image analysis (OBIA) technique. In this paper, one used

the GPU parallel hardware for the parallel implementation of RHSEG technique. GPU has

lower weight and power consumption compared with computer clusters. The GPU

implementation was tested on NVIDIA 8800 GT board with 112 processing cores using

CUDA platform. The main idea presented in this paper is the parallelization of the

dissimilarity calculation step in RHSEG algorithm because of the suitability of parallel

execution of these calculations. Other parts of the algorithm are executed on CPU thread. An

average speed up of 1.6 times over the sequential CPU implementation is achieved.

Speedup rates reported in this paper still do not meet the expectations. Many

improvements are needed to enhance the performance of GPU RHSEG in terms of running

time, such as using GPU shared and constant memory for faster memory access rates,

minimizing memory copies from CPU to GPU at each step when updating changed data

structures, or the execution of HSEG on divided image sections in parallel, thus not only

parallelizing dissimilarity calculations for each image section one by one, but also executing

several image sections at once in parallel on the GPU.

In the future, one intends to experiment a hybrid multithreaded CPU/GPU and GPU

cluster implementations for even more performance optimization of RHSEG technique.

Table 1: Summery of experiments results

Egyptian Computer Science Journal, ECS, Vol. 36 No. 3, September 2012 ISSN-1110-2586

-65-

References

[1] Setoain, J., Prieto, M., Tenllado, C. and F. Tirado, GPU for parallel on-board

Hyperspectral image Processing. International Journal of High Performance

Computing Applications, Vol. 22, no. 4, pp. 424-437, 2008.

[2] Jong, S. D. and Meer, F. V. D., Imaging spectrometry: Basic Principles and

Prospective Applications, Kluwer Academic. 2002.

[3] Lu, D., and Weng, Q., A Survey of Image Classification Methods and Techniques For

Improving Classification Performance. International Journal of Remote Sensing, Vol.

28, no. 5, pp.823-870, 2007.

[4] Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G.,

Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J. C. and

Trianni, G., Recent advances in techniques for hyperspectral image processing,

Remote Sensing of Environment, Vol. 113, Supplement 1, pp. S110–S122, September

2009.

[5] Keshava N., A Survey Of Spectral Unmixing Algorithms. Lincoln Laboratory

Journal, Vol. 14, no. 1, pp. 55-78, 2003.

[6] Tilton, J. C, Method for Recursive Hierarchical Segmentation By Region Growing

And Spectral Clustering With A Natural Convergence Criterion. Disclosure of

Invention and New Technology: NASA Case No. GSC 14,328-1, 2000.

[7] Blaschke, T., Object Based Image Analysis for Remote Sensing. Journal of

Photogrammetry and Remote Sensing (ISPRS), Vol. 65, no. 1, pp. 2-16. 2010.

[8] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E., and

Purcell, T. J., A Survey of General- Purpose Computation on Graphics Hardware.

Computer Graphics Forum, Vol. 26, no. 1, pp. 80-113. 2007.

[9] Plaza, A., Martinez, P., Perez, R. and Plaza, J., Spatial/Spectral Endmember

Extraction by Multidimensional Morphological Operations. IEEE Transactions on

Geoscience and Remote Sensing, Vol. 40, no. 9, pp. 2025-2041, 2002.

[10] Plaza, A. and Chang, C.-I., Clusters versus FPGA for Parallel Processing of

Hyperspectral Imagery. International Journal of High Performance Computing

Applications, Vol. 22, no. 4, pp. 366-385, November 2008.

[11] Guilhermino, A., Filho, S., Frery, A. C., Araújo, C. C. D., Alice, H., Cerqueira, J.,

Loureiro, J. A., de Lima, M. E., Oliveira, M. S., Horta, M. M., Hyperspectral Images

Clustering on Reconfigurable Hardware using The K-Means Algorithm K-Means

Clustering. 16th Symposium on Integrated Circuits and Systems Design (SBCCI),

pp.99, 2003.

[12] Plaza, A., Valencia, D., Plaza, J. and Martinez, P., Commodity Cluster-Based Parallel

Processing of Hyperspectral Imagery. Journal of Parallel and Distributed Computing,

Elsevier, Vol. 66, no. 3, pp.345-358. 2006.

[13] Plaza A., Chang, C.-I, Plaza, J. and Valencia, D., Commodity Cluster and Hardware-

Based Massively Parallel Implementations of Hyperspectral Image Analysis

Algorithms. Journal of Parallel and Distributed Computing, Vol. 66, pp. 345−358.

2006.

Egyptian Computer Science Journal, ECS, Vol. 36 No. 3, September 2012 ISSN-1110-2586

-66-

[14] Sanchez, S. and Plaza, A., A Comparative Analysis of GPU Implementations of

Spectral Unmixing Algorithms. High-Performance Computing in Remote Sensing,

Proceedings of the SPIE, Vol. 8183, pp. 81830E-81830E-10, 2011.

[15] Rosario-Torres, S. and Velez-Reyes, M., Speeding up the MATLAB™ Hyperspectral

Image Analysis Toolbox using GPUs and the Jacket Toolbox. First Workshop on

Hyperspectral Image and Signal Processing Evolution in Remote Sensing, pp.1-4,

2009.

[16] Parallel RHSEG performance results, retrieved from NASA featured technologies -

recursive hierarchical segmentation on Data Analysis website:

http://ipp.gsfc.nasa.gov/ft_tech_rhseg.shtm.

[17] Beaulieu, J. M. and Goldberg, M., Hierarchy in Picture Segmentation: A Stepwise

Optimization Approach. IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 11, no. 2, pp. 150-163. 1989.

[18] Tilton, J., Image Segmentation by Region Growing and Spectral Clustering With a

Natural Convergence Criterion. Geoscience and Remote Sensing Symposium

Proceedings (IGARSS 98), Vol. 4, pp.1766 – 1768, 1998.

[19] Kirk, D., NVIDIA CUDA Software and GPU Parallel Computing Architecture.

Proceedings of the 6th International Symposium on Memory Management (ISMM

07), pp.103-104, 2007.

