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Abstract  
 

In solving engineering optimization problems; very special cases of the problems can be 

solved in polynomial time while, most of them are considered as hard combinatorial 

optimization problems “NP-hard”, and most of the solution algorithms for these problems are 

based on numerical linear and nonlinear programming methods that require substantial 

gradient information and usually seek to improve the solution in the neighborhood of a 

starting point. Quantum-behaved particle swarm optimization (QPSO) algorithm is a global 

convergence guaranteed algorithms, which outperforms original PSO in search ability but has 

fewer parameters to control. In this paper, we propose an improved quantum-behaved particle 

swarm optimization with new beta value according to fitness values of the particles. It is 

shown that the improved QPSO has faster local convergence speed, resulting in better balance 

between the global and local searching of the algorithm, and thus generating good 

performance. The proposed improved QPSO, called beta damping algorithm (MQPSO) 

approach for engineering optimization problems with both continuous and discrete designed 

variables, is tested on several benchmark functions and compared with QPSO. The 

experiment results show the superiority of MQPSO. 
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1. Introduction  
 

Over the past several decades, population-based random optimization techniques, such 

as evolutionary algorithm and swarm intelligence optimization, have been widely employed 

to solve global optimization (GO) problems. Four well-known paradigms for evolutionary 

algorithms are genetic algorithms (GA), evolutionary programming (EP), evolution strategies 

(ES) and genetic programming (GP). These methods are motivated by natural evolution. The 

particle swarm optimization (PSO) method is a member of a wider class of swarm intelligence 

methods used for solving GO problems. [1][5] .The method was originally proposed by 

Kennedy as a simulation of social behavior of bird flock and was first introduced as an 

optimization method in 1995. Instead of using evolutionary operators to manipulate the 

individuals as in other evolutionary algorithms, PSO relies on the exchange of information 

between individuals. Each particle in PSO flies in search space with a velocity, which is 

dynamically adjusted according to its own former information. Since 1995, many attempts 
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have been made to improve the performance of the PSO [8]. As far as the PSO itself 

concerned, however, it is not a global optimization algorithm, as has been demonstrated by 

Van den Bergh, Sun introduce quantum theory into PSO and propose a quantum-behaved 

PSO (QPSO) algorithm, which can be guaranteed theoretically to find optimal solution in 

search space. The experiment results on some widely used benchmark functions show that the 

QPSO works better than standard PSO and should be a promising algorithm.[2][6]. 

 

Quantum behaved particle swarm optimization (QPSO) algorithm is a global 

convergence guaranteed algorithms, which outperforms original PSO in search ability but has 

fewer parameters to control [6]. In this paper, we propose an improved quantum-behaved 

particle swarm optimization with weighted mean best position according to fitness values of 

the particles. To balance the global and local searching abilities, we introduce a new 

parameter in calculating the mean best position in QPSO to render the importance of particles 

in population when they are evolving, and thus proposed novel quantum-behaved particle 

swarm optimization algorithm, beta damping QPSO (MQPSO).  It is shown that the improved 

QPSO has faster local convergence speed, resulting in better balance between the global and 

local searching of the algorithm, and thus generating good performance. The proposed 

improved QPSO, called Modified QPSO (MQPSO) algorithm, is tested on several benchmark 

functions and compared with QPSO and standard PSO. The experiment results show the 

superiority of MQPSO.  
 

The rest part of the paper is organized as follows. In Section 2, a brief introduction of 

quantum behaved PSO is given. The Proposed Novel Approach of Quantum Particle Swarm 

Optimization is introduced in Section 3. In Section 4, we propose comparative analysis 

between QPSO and Modified QPSO and show how to balance the searching abilities to 

guarantee the better convergence speed of particles. Some experiments result on benchmark 

functions and discussions are presented. Finally, the paper is concluded in Section 6. 

 

2. Quantum PSO Algorithms 
 

2.1  Overview of Quantum PSO Algorithms  

 

QPSO is a kind of probabilistic algorithm and the iterative equation of QPSO is very 

different from that of PSO. Besides, unlike PSO, QPSO needs no velocity vectors for 

particles, and has fewer parameters to adjust making it easier to implement. The QPSO 

algorithm has been shown to offer good performance in solving a wide range of continuous 

optimization problems and many efficient strategies have been proposed to improve the 

algorithm. QPSO was inspired by analysis of the convergence of the traditional PSO and 

quantum system. In the quantum physics, the state of a particle with momentum and energy 

can be depicted by its wave function Ψ (x, t). Then in QPSO, we hypothesize that each 

particle is in a quantum state and is formulated by its wave function Ψ (x, t) instead of the 

position and velocity which are in PSO. According to the statistical significance of the wave 

function, the probability of a particle's appearing in a certain position can be obtained from 
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the probability density function | Ψ (x, t)|
2
 [2][8]. And then the probability distribution 

function of the particle's position can be calculated through the probability density function. 

The particle's position is updated according to the following equation: 

                       )1(
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Where u is a random number uniformly distributed in (0, 1) and L is the most important 

variable which determines the search scope of each particle, and it is given by the distance 

between the particle’s current position and point p ) [1][3]. 

 

                                                  (2) 

Where parameter    is called the contraction-expansion (CE) coefficient, which can be 

tuned to control the convergence speed of the algorithms [4].  
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Where  and   denote the maximum and minimum of    , respectively,  f   is 

the current objective value of the particle,  and  are the average and minimum 

objective values of all particles, respectively. Then we get the position update equation as: 
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We call the PSO algorithm with last position update equation as quantum delta-

potential-well-based PSO (QDPSO) algorithm. A global point called mainstream thought or 

mean best position of the population is introduced into PSO. The global point, denoted m 

best, is defined as the mean of the p best positions of all particles [1][3].  

 
 

M is the population size and pi is the best position recorded by particle i. and the position 

is given by : 
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Generally, we call the PSO algorithm with the last equation quantum-behaved particle 

swarm optimization (QPSO). The most commonly used control strategy of   is to initially 

setting it to 1.0 and reducing it linearly to 0.5. 

 

2.2- Implementation of QPSO algorithm procedures 

Initialize an array of particles with random positions inside the problem space. and 

population size, the positions, and the dimensions of the particles The user must choose the 

key parameters that control the QPSO, namely population size of particles, boundary con-

straints of optimization variables, cognitive component (c1), social component (c2), 

contraction-expansion coefficient ( ) and the stop criterion (t max) [3]. Then evaluate the 

fitness value of each particle and determine the mean best position among the particles by 

means of 

 

     

Compare each particle's fitness with the particle's p best. Evaluate the desired objective 

function (e.g. minimization) for each particle and compare with the previous best values. If 

the current value is better than the previous best value, then set the best value to the current 

value, i.e. if f (Xi) < f (Pi), then Xi = Pi. Determine the current global position minimum 

among the particle's best positions, i.e. 

   

i
mx

gbest PP
1

min    (7) 

Compare the fitness with the population's overall previous best. If the current value is 

better than g best, then reset g best to the current particle's array index and value. Compare the 

current global position with the previous global best position. [3]. Update the position of the 

particle according to the next equation: 

            

Repeat until a stop criterion is satisfied or pre-specified number of iterations is 

completed. The stopping criterion can be one or more of the following the first is fixed number 

of iterations or fixed value of the fitness function or fixed number of iterations without change in the 

performance finally an accepted best error value (cut off) 
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Initialize population  of all particles randomly  

Initialize  with the corresponding initial position  

Initialize  

Do while the criteria is not met 

          Calculate  according to equation 6 

          For each particle  

                     Calculate  according to equation 2 

                     For   d   = 1 to dimension D 

                                            

     

    

   Else 

    

    End 

  End 

  Fitness evaluation for  

  If   

    

    

                       End 

              End for 

End 

Fig (1) Pseudo code of QPSO  

Hybridization is a usually used method to improve the performance of QPSO, which 

aims to combine the desirable properties of different approaches to mitigate QPSO weakness. 

The mutation operator is one of the mechanisms of genetic algorithms (GAs)[  and it provides 

diversity in the search and helps in exploring the undiscovered search place [5]. This 

mechanism can also help the QPSO algorithm to escape from the local minima. g best and m 

best in QPSO were mutated with Cauchy distribution the amend strategy based on annealing 

was adopted by the scale parameter of the mutation operator to increase the self-adaptive 

capability of the improved algorithm. A kind of mutation based on chaotic sequences was 

applied in QPSO, which was a powerful strategy to diversify the QPSO population and 

improve the QPSO's performance in preventing premature convergence to local minima. A set 

of mutation operators used in QPSO were analyzed and the performance was compared by 

evaluating a set of benchmark functions. 

 

3. Proposed Novel Approach of QPSO 
 

This section presents a new QPSO called MQPSO which uses the quantum theory of 

mechanics to govern the movement of swarm particles along with an interpolation (quadratic 

interpolation) based recombination operator. The concept of quadratic interpolation as a 

recombination operator will introduced, for improving the performance of classical PSO, 



Egyptian Computer Science Journal, ECS, Vol.  36 No. 3, September 2012   ISSN-1110-2586 

 
 

 
 

 

 

-72- 

 

where it gave significantly good results. This motivated us to apply this concept for QPSO 

also to improve its performance. The proposed M-QPSO algorithm is a simple and modified 

version of QPSO in which we have introduced the concept of recombination. The MQPSO 

algorithm starts like the usual QPSO. At the end of iteration the quadratic interpolation 

recombination operator is invoked to generate a new swarm particle.  The new particle is 

accepted in the swarm only if it is better than the worst particle the particle having maximum 

fitness, present in the swarm. This process is repeated iteratively until a better solution is 

obtained. The quadratic crossover operator is a nonlinear operator which produces a new 

solution vector lying at the point of minima of the quadratic curve passing through the three 

selected swarm particles The numerical results show that the QPSO works better than PSO for 

all functions that have several beaks. For benchmark functions, the performance of QPSO is 

superior to PSO[1][8]. However, our preliminary experimental results show that when the 

contraction-expansion coefficient varies from 1.2 to 0.5, QPSO outperforms PSO on all 

functions. The results also show that introducing the constriction factor into PSO does not 

improve the algorithm in general. We note that QPSO is better than PSO for the problems 

which have several minima and escape from the local minimum but we note that the 

performance of QPSO is decrease for the problem which have minimum not zero and zero 

(origin). So we modified the beta step value according to the following algorithm. 
 

1. Introducing a damping oscillating equation for   
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2. Increase diversity after certain number of iteration without finding better new solution : 
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3.  Is considered a particle in the swarm, hence   is evaluated with fitness 

function. 
 

4. Avoiding loss off particle movement if   equal zero by introducing random noise  to 

the position equation to be : 
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Where  )(   R  and R is random number in range of [0.1 % of domain]. The next 

figure presents the values of beta according to the previous steps with the number of iteration. 
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Fig 2 Beta damping modification  

 

In Modified QPSO algorithm a nonlinearly decreasing contraction expansion coefficient 

( ) is used which starts by large value and decrease as in the previous figure. The acceleration 

constants are taken as from 1.7 to 1.8. In order to check the compatibility of the proposed 

MQPSO algorithm we have tested it on two out of eight benchmark problems (uncontained) 

the first function (De Jong function ) is unimodal function with best solution at the origin and 

the second problem (Ackley function ) is multimodal problem with different solution. All the 

test problems are highly scalable in nature and are considered to be starting point for checking 

the credibility of any optimization algorithm. There is not much literature available in which 

MQPSO is used extensively for solving a variety of test problems. Therefore, for the present 

study, we have considered two test problems out of which the first problem is the ones that 

have been tested with some variants of MQPSO. The remaining problem we have solved with 

our version and QPSO. To testify the applicability of M-QPSO to NLP problems, we 

performed two groups of experiments on unconstrained and constrained benchmarks.  

 

4. Comparative Analysis between QPSO and MQPSO 

This paper introduces a new version of QPSO to increase the performance to solve 

linear and nonlinear problems. The proposed version depends on modified the beta 

contraction expansion coefficient which can be tuned to control the convergence speed of the 

algorithms. The control method of  is vital to the convergence rate and performance of the 

algorithm. The philosophy of changing the value of beta to provide damping behavior to the 

movement of the particle to allow escaping from the local minima to other best positions [11].   

 

The paper proposed a more efficient method which called beta damping process. In 

order to determine whether the modified QPSO algorithm can be more effective than PSO and 

other forms of PSO, QPSO, and three variants of PSO, which can be classified into the 

probabilistic algorithms, are used to optimize a set of benchmark functions. The benchmark 

functions are given in Table 1 [7][9]. 
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Table 1 the benchmark functions 
 

Function Initial Range Optima 
Optimal 

Position 

Sphere      =0  =(0,….,0) 

Rosenbrock 

 

 =0  =( 1,….,1) 

Schwefel function 

 

 =0 
 =( 420,.., 

420) 

Rastrigin 

 

 =0  =( 0,….,0) 

Ackley   
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 =0  =(0,….,0) 

Griewank 

 
 =0  =( 0,….,0) 

 

To test the performance of the proposed QPSO (MQPSO), two benchmark functions 

listed in Table 1 are used here for comparison with QPSO algorithm. These functions are all 

minimization problems with different minimum values. In our experiments the fitness value is 

set as function value and the neighborhood of a particle is the whole population. We had 100 

trial runs for every instance and recorded mean best fitness and standard deviation.  
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In order to investigate the scalability of the algorithm.From the results we have the following 

comments for each of the used benchmark functions: 

Sphere function 

It is a unimodal function with global minimum located at x = (0, 0,....,0) with f(x) = 0 as shown in 

table 1. It is clear that the MQPSO algorithm is superior to the SPSO and QPSO algorithms as shown in 

table 2 , figures 3 and 4. The minimum best point obtained as a near global minimum found by the 

proposed MQPSO algorithm is given in table 6, which is the coordinates of the best point in the thirty 

dimensional search space. The fitness, i.e. function value, of such a point is given in the table 6  is 

8.74741E-11 with stander deviation 1.02E-03.  

 

 

 

 

 

 

Table 2 Sphere Function Results 

Sphere Fun Stander PSO QPSO MQPSO 

Best Error 5.08E-06 8.99E-09 8.75E-11 

Stander Div  6.49E-03 3.11E-03 1.02E-03 

 

Fig 3 Mean Best Error Sphere Function 

 

Fig 4 Stander Deviation for Sphere Function 

 

Rosenbrock function 

It is another unimodal function with global minimum located at x = (l,l,....,l) with f(x) = 0 as 

shown in table 1. The comparison results of the three algorithms are illustrated in table 3, figures 5 and 

6. It is found that the MQPSO algorithm fails to get the best error as given in the appendix on the other 

hand; the MQPSO is superior to the other algorithms in terms of the other performance measures. The 

best point obtained as a near global minimum found by the proposed MQPSO algorithm is given in the 

third column in appendix A, which is its coordinates in the thirty dimensional search space. The function 

value, stander deviation of such a point is given in the last row of table 6 as: 1.25060   and 9.29E-01 

respectively.  
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Table 3 Rosenbrock Function Results 

Rosenbrock Fun Stander PSO QPSO MQPSO 

Best Error 94.1276 5.95E+01 1.25E+00 

Stander Div  11.96125 5.96E+00 9.29E-01 
 

 

    Fig 5 Mean Best Error Rosenbrock Function 

 

   Fig 6 Stander Deviation for Rosenbrock Function 

 Rastrigin function 

It is a multimodal function with global minimum located at x = ( 0,0,....,0) with f(x) = 0 as shown 

in table 1. It is clear that the MQPSO algorithm is superior to the SPSO and QPSO algorithms as shown 

in table 4, figures 7 and 8 . The minimum best point obtained as a near global minimum found by the 

proposed MQPSO algorithm is given in the fourth column in table 6 , which is the coordinates of the 

best point in the thirty dimensional search space. The best error, stander deviation values, of such a point 

is given in the last three rows of appendix A as 3.97991 and 0.1451605 respectively.  
 

Table 4 Rastrigin Function Results 

Rastrigin Fun Stander PSO QPSO MQPSO 

Best Error 5.54E+00 5.25E+00 3.98 

Stander Div  8.60E+00 6.85E+00 6.08 
 

 

                  Fig 7 Mean Best Error Rastrigin Function 

 

    Fig 8 Stander Deviation for Rastrigin Function 
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Schwefel function 

It is a multimodal function with global minimum located at x = (420.9687, 420.9687,…., 420.9687) 

with f(x) = 0 as shown in table 1. It is clear that the MQPSO algorithm is superior to the PSO and QPSO 

algorithms as shown in table 5 , figures 9 and 10. The minimum best point obtained as a near global 

minimum found by the proposed MQPSO algorithm is given in the fifth column in table 6 , which is the 

coordinates of the best point in the two dimensional search space. The best error, stander deviation values , 

of such a point is given in the last  row of  table 6  as: 2.5455E-05 and 4.75E-02 respectively.  
  

Table 5 Schwefel Function Results 

Schwefel Fun Stander PSO QPSO MQPSO 

Best Error 17.65 8.42009 2.55E-05 

Stander Div  3.164 1.21867 4.75E-02 
 

 

            Fig 9  Mean Best Error Schwefel Function 

 

Fig 10 Stander Deviation for Schwefel Function 

Table 6 the Optimal Solution Positions found by MQPSO in ten dimensions 

Dimension Sphere Rosenbrock 

 

Schwefel Rastrigin 

 
Ackley Griewank 

1 -2E-06 0.999275 420.968746 -2E-05 0 -2.7E-05 

2 -1E-06 0.999537 420.968746 -0.0004 1E-06 -2.7E-05 

3 -4E-06 1.0033 420.968746 5.6E-05 0 -2.5E-05 

4 0 1.0141 420.968746 0.00013 0 0.000099 

5 5E-06 1.0397 420.968746 5.8E-05 0 0.000036 

6 4E-06 1.0886 420.968746 -4E-05 -1E-06 -3E-06 

7 4E-06 1.1872 420.968746 0.99491 -1E-06 0.00005 

8 -2E-06 1.41463 420.968746 -0.9947 0 -0.00011 

9 2E-06 2.0002 420.968746 0.99498 -1E-06 0.000095 

10 -2E-06 4.0126 420.968746 -0.9954 0 -4.3E-05 

Best Error  8.74741E-11 1.25060 2.5455E-05 3.97991 2.37145E-06 9.6698E-12 
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It is clear from the above comparison results that the proposed MQPSO algorithm exhibits a very 

promising and competitive behavior which reflects the efficacy of its adopted philosophy. 

 

5. Conclusion  

In this paper, a new approach, called "Beta Damping Quantum Behaved Particle Swarm 

Optimization", M-QPSO, tested with a set of two benchmark functions nonlinear functions 

the statistical results are compared with those obtained through QPSO methods. To improve 

the performance of QPSO, an adaptive mechanism is introduce for the parameter β of QPSO 

numerical simulations based on both continuous and discrete chaotic systems demonstrate the 

effectiveness and feasibility of the modified QPSO method. The comparisons indicate that M-

QPSO approach is efficient in reaching near to global optimum and escape from the local 

minimum. We note that the approach method is faster and more accurate than stander QPSO 

in most of the problems. Statistical measures confirm the efficacy and the superiority of the 

proposed method. We can explain the advantages of the program 2 on the program 1 in the 

following points 

 The Modified QPSO approach emulates in some part the natural phenomena.  

 The Modified QPSO approach is able to solve problems with either continuous or discrete 

variables and constrained problems and unconstrained ones. 

 The Modified QPSO approach is efficient in reaching near to global optimum and escape 

from the local minimum. 

 The approach method is faster and more accurate than stander PSO and QPSO in most of 

the problems. 

 Statistical measures confirm the efficacy and the superiority of the proposed method. 
 

For the future work, we should give more consideration about how to determine the 

parameters; try to find other mechanisms to improve the QPSO to solve more engineering 

optimization problems. 
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