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Abstract  
 

Maximal Constraint Satisfaction Problems (Max-CSPs) are constraint optimization 

problems, in which the goal is to maximize the number of satisfied constraints. Max-CSPs are, 
in general, solved using Branch and Bound (B&B) algorithms. Their respective efficiency 

highly depends on the quality of the lower bound. The naive B&B has been improved by using 
consistency maintenance procedures and conflict backjumping. In this paper, the authors give a 
new treatment for improving NC*-CBJ algorithm for solving a Max-CSP which is the B&B 

algorithm using advanced Node Consistency procedure (NC*) and performing 
Conflict-directed Backjumbing (CBJ), [17]. The goal of this improvement is increasing the 

lower bound of NC*-CBJ via taking into account more inconsistencies which resulted from the 
proposed partially incompatible relation between the future variables. The introduced treatment 
leads to suggesting new algorithm, M-NC*-CBJ, which is a natural successor of NC*-CBJ 

algorithm including the modification of the lower bound. By comparing with the results of 
NC*-CBJ, the experimental results of M-NC*-CBJ on random CSPs show improvement both 

in execution times and number of assignments. 
 

Keywords : Constraint satisfaction; Max-CSP; Branch and Bound; Lower bound;               

Node consistency; NC*-CBJ. 
  
 

1. Introduction 
 

The Constraint Satisfaction Problem (CSP) is a powerful and efficient framework for 
modeling and solving many real world problems. Some well known examples are: Scheduling, 
planning, network management and configuration.  Due to the ability of (CSP) techniques it 

has helped in the development of tackling some recent applications including: Computer 
graphics (expressing geometric coherence in the case of scene analysis, drawing programs, user 

interfaces), natural language processing (construction of efficient parsers), database systems (to 
ensure and/or restore consistency of the data), molecular biology (DNA sequencing, chemical 
hypothesis reasoning), business applications (option trading), electrical engineering (to locate 

faults), circuit design (to compute layouts) and transport problems.  
 

The Constraint Satisfaction Problem (CSP) framework allows researchers to define 
problems in a declarative way, quite independently from the solving process. However, when 

the problem is over-constrained, the answer no solution is generally unsatisfactory. In this case, 
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the goal is, often, to find an assignment satisfying as many constraints as possible which is 

known as a Maximal constraint satisfaction problem (Max-CSP). A Max-CSP is a constraint 
problem whose solutions maximize the number of satisfied constraints [2]. 

 

Many algorithms have been developed for Max-CSP using Branch and Bound (B&B) 
methods combined with heuristics for selecting the variables and the values at each step of the 

search tree, e.g., [2, 4, 14]. Their respective efficiency highly depends on the quality of the 
lower bound. Many lower bound computation methods for branch and bound have been 
developed for solving Max-CSP see e.g., [2, 3, 5, 15]. Those methods can be considered as 

procedures that search for disjoint inconsistent constraints in the Max-CSP instance under 
consideration. The difference among them is the technique used to detect inconsistencies. In 

[2], the authors computed a lower bound of inconsistencies from the set of assigned variables. 
Furthermore, the effect of these variables on unassigned ones by using forward checking. This 
lower bound is improved by including inconsistencies among future variables by the usage of 

Directed Arc consistency (DAC) [15]. Further improvements have been introduced in [3] and 
[16]. Recent works focus on the exploitation of propagation mechanisms to improve the value 

of the lower bound, through soft arc-consistency algorithms ([6, 11, 12], initially introduced in 
[1]) or by using conflict-set based algorithms [10]. These algorithms detect violations which are 
ignored by the previous reference algorithm PFC-MRDAC [5]. 

 

One of the most successful approaches to build lower bounds has been obtained by 

extending some local consistency notions to weighted CSP 1 . In [7], Larrosa and schiex 
presented new consistency maintenance procedures based on their work which introduced in 

[6].  Some examples of this procedures are NC* for Node Consistency and AC* for Arc 
Consistency. In [17], NC*-CBJ algorithm was obtained by adding conflict directed 
backjumping (CBJ) to branch and bound, which maintains NC*. This addition leads to 

improving the performance of branch and bound algorithm for solving Max-CSPs. 
 

In this paper, the proposed modification is to improve a lower bound of NC*-CBJ. Its idea 

depends on taking into account more inconsistencies which resulted from the given partially 
incompatible relation between the future variables. NC*-CBJ algorithm that including the 

modification of the lower bound, leads to suggesting M-NC*-CBJ algorithm. By comparing 
with the results of NC*-CBJ, the experimental results of M-NC*-CBJ on random CSPs show 
improvement both in CPU-time s and number of assignments. 

 

This paper is organized as follows. In section 2, some preliminaries and definitions 
required in the rest of the paper are introduced. Section 3 includes a brief description of iterative 

NC*-CBJ algorithm which is B&B algorithm combined with NC* and CBJ. In section 4, the 
new partially incompatible relation is defined. Furthermore, the modified NC*-CBJ algorithm 

that depends on the new lower bound, M-NC*-CBJ, is described. Section 5 includes analysis of 
complexity of the additional part to NC*-CBJ lower bound and its correctness. Moreover, we 
prove that M-NC*-CBJ lower bound is still lower bound. Section 6 contains experimental 

results of M-NC*-CBJ showing a clear performance improvement in both execution time and 
number of assignments. Finally, section 7 presents the conclusion of the paper and some 

directions of future work. 

                                                 
1 Max-CSP is a special case of weighted CSP in which each constraint has an associated weight, and the goal is to find a 

solution that maximizes the total weight of the satisfied constraints. 
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2.  Basic Definitions 
 

This section introduces the main notations and definitions that are used throughout the 

paper. In the following, the definitions of a Maximal Constraint Satisfaction problem 
(Max-CSP) and the local Node Consistency property (NC*) used for solving a Max-CSP are 
given. 

 

A classical binary Constraint Satisfaction Problem (CSP) is a triple Z = (X, D, R), where      

X = {1, 2, ..., n} is a set of variables, D = { nDDD ,...,, 21 } is a set of domains of the variables in 

X, and R is a set of (possibly) unary or binary constraints defined on subsets (one or two) of 

variables of X. Each variable i  X  has a finite domain iD   D of values that can be 

assigned to it. (i, a) denotes the assignment of value a   iD  to variable i. A partial solution, t, 

is an ordered set of values assigned to the ordered set of variables tX    X (namely, the k-th 

element of t is the value assigned to the k-th element of tX ). A unary constraint iR  is a subset 

of iD  containing the permitted assignments to variable i. A binary constraint ijR  is a set o f 

pairs from ji DD   containing the permitted simultaneous assignments to i and j. Binary 

constraints are symmetric, i.e., jiij RR  . The set of (one or two) variables whose values are 

restricted by a constraint is called its scope. A partial solution t is consistent if it satisfies all 

constraints whose scope are included in tX . It is globally consistent if it can be extended to a 

complete consistent assignment. A solution to CSP consists of finding a consistent complete 

assignment [13]. In some cases, a CSP instance may be over-constrained and thus, admits no 
such solution. We can then be interested in finding a complete instantiation that best respects 
the set of constraints. In this work, we consider the Maximal Constraint satisfaction Problem. 

An optimal solution of a Max-CSP is a complete instantiation satisfying maximum number of 
constraints, i.e., violating the minimum number of constraints [2]. 

 

Existing algorithms for solving Max-CSP are basically designed to follow a branch and 

bound ( BB & ) schema. These algorithms perform successive assignments of values to 

variables through a depth-first traversal of the search tree. In the search tree, internal nodes 

represent partial assignments of values to variables. In addition, a leaf that ends a branch of 

|| X  nodes stands for a complete assignment. At each node, assigned variables are called Past 

(P)2 while unassigned variables are called Future (F). B&B algorithms associate a cost to each 

node in the search tree. The cost of a node is the number of constraints violated by its 

assignment. In the following, the formal definition of the cost of the current partial solution 

(CPS) is given. 

 

 

  

                                                 
2 If t is partial assignment, then PX t =  
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Definition 2.1.  Cost(CPS) = b)(a,r ijj<iP,ji,   such that 

 

   ),( barij  = {
1            𝑖𝑓 ,),( ijij RbaR                  

 0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                                 
 

 
where a and b are the values assigned to past variables i and j, respectively.  

  

The main idea of B&B is simple and clear. In a B&B algorithm, two bounds are 
constantly maintained which are determined during execution. An Upper Bound (UB) is the 

cost of the best solution found so far and is initialized to infinity. A Lower Bound (LB) is an 
underestimation of the minimal number of constraints that will become unsatisfied if the 
current partial assignment is completed. At every node, the B&B algorithm compares the UB 

with the LB. If LB   UB, the algorithm prunes the subtree below the current node and then 
backtracks (backjumping) to a higher level in the search tree. If LB <  UB, the algorithm tries 
to find a better solution by extending the current partial solution by instantiating one more 

variable. A current partial-solution, CPS, is expanded by assigning a value to a variable 3 which 
is not included in it. 

 
In the description of the maintenance local consistency and CBJ in a B&B-NC*-CBJ 

algorithm, the following definition is used. In the definition,   represents a list concatenation 

 

Definition 2.2.  For i  F and a iD , the cost of (i, a), iC (a), is the number of past 

variables which its assignments are inconsistent with (i, a) which is determined by 

                   iC (a) = )b (a,r
ji pj 

,  

where b is the value assigned to past variable j. 
 

Additionally, the conflict- list of (i, a), iL (a), is the ordered list which includes all the 

assignments in the current solution that inconsistent with (i, a) which is given by 

                    iL (a) = ),(1=),(, bjbaijrPj ,  

and the length of iL (a) is equal to iC (a). 

 
By using the previous definition, the current-cost and the conflist-set of a variable4 can 

now be defined. In case of an assigned variable, its current cost is the cost of its assigned value; 

otherwise, the current-cost is the minimal cost of a value in its current domain.  
 

 
 
 

 

                                                 
3 Values are always assigned using the M -cost heuristic i.e. the next value to be assigned is the value with the smallest cost in 

the  variable’s current domain. 
4 Definition 2.3 and 2.4 are informally founded in [17]. 
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Definition 2.3.  Given a variable i the current-cost of  i, C-cost(i), is given by 

 

)(icostC   = 

{
  
 

  
 )(aCi                                                 i),tovalueassignedtheis(aP)i(if 

(a)
i

Cmin
iDa 

                                                                      .Fiif  .                                           .                                            

 

                
Definition 2.4.  Let an integer value c be the cost of variable i. A conflict-set, S-conflict(i, c), of 

i with cost c is given by 
 

S-conflict(i, c) = ))(,( aLcfirst iiDa 
.  

 

Where the function first(c, )(aLi ) returns the first (most recent) c assignments in )(aLi . If 

length of )(aLi  is less than c, then the function returns all assignments in )(aLi . 

  
 Max-CSPs are usually solved with a tree produced from branch-and-bound in which each 

node is a partial solution. To accelerate the search, local consistency properties are widely used 

to transform the sub-problem at each node of the tree to an equivalent simpler one. The simplest 
local consistency property is the following advanced node consistency (NC*)5. For defining 

NC* property, assume the existence of a zero-arity constraint, C , whose initial value is equal 

to zero.  

 
Definition 2.5.  Let Z = (X, D, R) be a binary Max-CSP and k >  || R ; the number of 

constraints in R. A variable i is node-consistent iff  
 

i)   a  iD , ( C  + iC (a)) <  k.  

ii)   a iD  such that )(aCi  = 0. 

 
 Such a value a is support  for the variable node consistency. Then, A Max-CSP is node 

consistence iff every variable is node consistent.  
 

Obviously, the property of node consistency can be enforced in time and space O(nd), 

where n is number of the variables and d is the maximum domain size.  
 

3.  Solving Max-CSP by B&B-NC*-CBJ 
 

In this section, we consider an improved version of the B&B algorithm which is known 

by NC*-CBJ [17], for Max-CSP. NC*-CBJ maintains local consistency procedure (NC*) with 
conflict-directed backjumbing (CBJ). In the following, the pseudo-code of B&B-CBJ 
algorithm is given. This algorithm is iterative and it includes functions that perform consistency 

checking and conflict-directed backjumbing. 
 

                                                 
5 This definition is a special case of the general definition introduced in [6] for Weighted CSP. The NC* considered in this 

paper is    for Max-CSP. 
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Algorithm (1) 

 

Procedure B&B-CBJ 

1:  begin 

2:  current state ← initial state; 

3:  CPS ← empty-assignment; 

4:  GCS ← empty-assignment; 

5:  i ← 0; 

6:  while i ≥ 0 do 

7:     if  i = n  then 

8:         Upper-Bound ← Lower-Bound ; 

9:          i ← i - 1; 

10:    else 

11:      for all  a ∈ Di  do  

12:          temp-state ← current-state; 

13:          update-state (i, a); 

14:          if  local-consistent(i) then 

15:              states[i] ← current-state; 

16:              current-state ← temp-state; 

17:               i ← i + 1; 

18:          end if 

19:       end for 

20:    end if 

21:   i ← find-culprit-variable( ); 

22:   current-state← states[i ]; 

23:  end while 

24:  end. 
 

      In the B&B-CBJ algorithm, a Global Conflict Set (GCS) that includes the union of the 

conflict sets of all assigned and unassigned variables is also maintained. The B&B-CBJ 

algorithm consists of procedure update-state, function local-consistency, and function 

find-culprit-variable. The description of function find-culprit-variable is given in Algorithm(2) 

that is activated when the algorithm B&B-CBJ executes a backjump step. Find-culprit-variable 

returns the latest assignment (the one with the highest variable index) in the GCS. When the 

GCS is empty, function find-culprit-variable returns -1 and hence the execution of B&B-CBJ 

algorithm will terminate. Procedure update-state( ) and function local-consistent( ) are 

described as follows. 
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Algorithm (2) 

 

Function find-culprit-variable(i) 

1:  begin 

2:   if GCS = ∅  then 

3:     return -1 ; 
4:   end if 

5:   culprit ← latest assignment in GCS ; 

6:   GCS ← GCS \ culprit ; 
7:   return culprit ; 

8:  end. 
 

Update with CBJ 
 

In this part, we present the procedure update-state( ) which take the new assignment as 

input. In Lines 2,3 from this procedure the new assignment is added to the Current Partial 

Solution (CPS)  and the cost(CPS) is increased by the value iC (val), respectively. Then, Lines 

(4-9) are used to add a conflict set of assigned variable i to GCS. Finally, Lines (10-17) are 

designed to update the cost and conflict- list of each value in the domain of future variables 

according to the added new assignment. 

Algorithm (3) 

Procedure update-state(i, val) 

1:  begin 

2:   add (i, val) to CPS; 

3:   cost(CPS)← cost(CPS) + Ci(val ); 

4:   for all a ∈ Di do 

5:     for 1 to Ci(val ) do 

6:         GCS ←GCS ∪ first-element in (Li(a)); 

7:          delete first-element from (Li(a)); 
8:     end for 

9:   end for 

10:  for j = i + 1 to n - 1 do 

11:      for all a ∈ Dj do 

12:          if conflicts((i, val), (j, a )) then 

13:             Cj(a) ← Cj + 1; 

14:             Lj(a) ← Lj(a)⊕(i, val); 

15:          end if 

16:     end for 

17:  end for 

18:  end. 
  

 NC*-CBJ 
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In general, a local-consistency function is used to reduce domains of unassigned 

variables. In the next, we restricted to advanced node consistency with CBJ named NC*-CBJ, 
as described in [17]. In NC*-CBJ, the algorithm computes a global lower bound of the number 

of unsatisfied constraints as the cost of current partial solution plus sum of minimum cost of 
each future variable. Algorithm(4) enforces NC* and maintains CBJ. 
  

Algorithm (4) 

Function NC*- CBJ(i) 

1:  begin 

2:  for j ← i + 1 to n - 1 do 

3:      cj ← C-cost(j); 

4:      for all a ∈ (Dj ∪ jD̂  ) do 

5:           Cj(a) ← Cj(a) - cj ; 
6:           for 1 to cj do 

7:              GCS ← GCS ∪ first-element(Lj(a)); 

8:              delete first-element(Lj(a)); 
9:           end for 

10:      end for 

11:  C∅ ← C∅ + cj ;  

12:  end for 
13:  lower bound ← cost(CPS) + C∅ ; 

14:  for  j ← i + 1 to n - 1 do 

15:      for all a ∈ Dj do 

16:        if Cj(a) + Lower-Bound ≥ Upper-Bound then 

17:           jD̂ ←
 jD̂ ∪ {a}; 

18:           Dj ← Dj \ {a}; 

19:        end if 

20:      end for 

21:  end for 

22:  return ( Lower-Bound < Upper-Bound ); 
23:  end. 
 

 

In NC*-CBJ, a global cost C  is maintained which is initially zero. For each domain 

jD  an additional set, jD̂ , is maintained which holds the values that were removed from jD . 

After every assignment, all costs of all values are updated as in update-state procedure. Then, 

for each future variable j F the minimal cost of all values in jD , jc , is calculated (line 3). In 

the loop from lines (4-12), all given cost for values determined via using algorithm(3) is 

decreased by jc . As a result of this substraction, the domain of every unassigned variable 

includes at least one value whose cost is zero. Then, for each produced value the first jc  

assignments in its conflict- list are removed and added to GCS. And therefore, the GCS includes 

the union of the conflict sets of all assigned and unassigned variables. In line 13, a global lower 
bound, LB, on the number of inconsistency constraints is calculated as the sum of the current 
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solution’s cost and C


, which is next used to prune values against the upper bound. If any 

lower bound of a value which is given by the sum of cost(CPS), C


, and its own cost, exceeds 

the limit of the upper bound then the value is removed from the variable’s domain as shown in 
(lines 14-21).  
 

4.  Partial Incompatible Based Lower Bound of NC*  
 

In this section, we define partially incompatible relation over set of variables of the given 

CSP. Upon this relation the algorithm M-NC*-CBJ calculates a new quantity by which the 

lower bound of NC*-CBJ algorithm is improved. The modified bound, M-lower-bound, is 

based on successive checking for the validity of partial incompatibility pairs among future 

variables. In the following, the partial incompatible relation between two variables is defined. 
 

Definition 4.1. Let i and j be two variables in a CSP and let kS    kD  for k   {i, j}. i and j 

are said to be partially incompatible with respect to iS  and jS  denoted by P-incomp( ji SS , ) 

if and only if   ijR  such that   a  iS  and   b  jS  we have (a, b) ijR .  
 

The introduced modification of NC*-CBJ function named M-NC*-CBJ, is described in 

Algorithm (5). In this algorithm lines (1-12) are the same as in NC*-CBJ( ) given in Algorithm 

(4). In the suggested algorithm, a set W is used to store the future variables which contribute in 

the new bound. W is testing later to modify the lower bound; at the beginning W is an empty set. 

For current variable i, the algorithm computes a local bound using a function Incomp-bound(i) 

which is described in details in Algorithm(6). The returned value by Incomp-bound(i) 

corresponds to the number of disjoint future variable pairs which are partially incompatible 

with respect of their sets of supported values. The computed value by the function 

Incomp-bound(i), is added to the previous lower bound that is computed by NC*-CBJ as stated 

in (line 14). In lines (15-28), the new lower bound (M-lower-bound) is used to prune values 

against an upper-bound. Values are pruned according to its cost. If the cost of a value a of future 

variable j is zero, then this value is pruned when the M-lower-boun   Upper-Bound. 

Otherwise, the value is pruned if                       ( jC (a)+ M-lower-bound - (check(j, 

W)))   Upper-Bound) as mentioned in line 23. The function check (j, W) returns one if the 

variable jW; otherwise returns zero.  
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Algorithm (5):  

Function M- NC*- CBJ(i) 

1:  begin  

2:  for j ← i + 1 to n - 1 do 

3:    cj ← C-cost(j); 

4:    for all a ∈ (Dj ∪ jD̂ ) do 

5:       Cj(a) ← Cj(a) - cj ; 

6:       for 1 to cj do 

7:         GCS ← GCS ∪ first-element(Lj(a)); 

8:         delete first-element(Lj(a)); 
9:       end for 

10:   end for 

11:   C∅ ← C∅ + cj ; 

12:  end for 

13:  W ← ∅ 

14:  M-lower bound ← cost(CPS) + C∅ + Incomp-bound(i) ; 

15:  for j ← i + 1 to n - 1 do 

16:      for all a ∈ Dj do 

17:           if Cj(a) = 0 then 

18:               if (M-Lower-Bound ≥ Upper-Bound) then 

19:       
            jD̂  ← jD̂ ∪ {a}; 

20:                   Dj ← Dj \ {a}; 

21:               end if 

22:           else 

23:              if (Cj(a) + M-Lower-Bound - check(j, W) ≥ Upper-Bound) then 

24:                   jD̂  ← jD̂ ∪ {a}; 

25:                   Dj ← Dj \ {a}; 

26:              end if 

27:           end if 

28:     end for 

29:  end for 

30:  return ( Lower-Bound < Upper-Bound ); 

31:  end. 
 

To complete the description of Algorithm (5) we give some details on the main idea of 
computing the new bound, Incomp-bound(i) function. In Which, for each future variable j we 

add it to a set F which is including the future variables of the current variable. Then, construct a 

set jS  which contains all supported values a, where a jD  such that jC (a) = 0 as shown in 

(lines 5-10). Next, for each two different future variables j and k we check wether or not they 

are partially incompatible with respect to jS  and kS . If they are partially incompatible, then 

the bound is increased by one. After that, j and k  are added to set W and removed from F (line 12-17). 
Otherwise, get a new pair of variables that belongs to F. When there is no more partially incompatible  

variables among future variables, the computed value is returned by the algorithm. 



Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013   ISSN-1110-2586 
 

 
 

 
 

-103- 
 

 

Algorithm (6) 

Function Incomp-bound(i) 

1:  begin 

2:  F ← ∅ ; 
3:  for j = i+1 to n-1 do 

4:       F ← F ∪ {j}; 
5:       for all a∈ Dj do 

6:            if Cj(a) = 0 then 

7:               add a to Sj ; 
8:            end if 

9:       end for 

10:  end for 

11:  bound = 0; 

12:  for all j, k ∈ F do 

13:         if ((j≠ k) & (P-incomp(Sj , Sk)) ) then 

14:               bound ← bound + 1;  
15                W ← W ∪ {j, k}; 

16:                F ← F \ {j, k}; 

17:         end if 

18:  end for 

19:  return bound; 
20:  end. 

 

     As illustrative application for showing the improvement of a lower bound is given in the 
following example.  

 

Example 
 

Given binary CSP Z = (X, D, R) having X= {1, 2, 3, 4}, iD  = {a, b,c} for i   {1, ..., 4}, 

and R= { 12R  , 13R  , 14R  , 23R  , 24R  , 34R  }, where 12R = { ( a, a ) , ( a, b ), ( c, a ) }, 13R = { 

( a, b ), ( b, a ) , ( c, b), ( b, c ) }, 14R  = { (b, c ) , ( b, a ), ( c, b ) }, 23R  = {( a, c ) ,( c, b) }, 24R  

= {( b, a ) ,( b, c ) ,( c, a ) }, 34R  = { ( b, b) ,( c, c ) ,( a, b) }. 
 

Executing the steps of algorithm(1) including modification, one can obtain the following:  

- Resulting in line (1-13) is CPS = { ( 1, a )}, cost(CPS)=0, F= { 2, 3, 4} and cost of each value 

in the domain of future variables is updating as follows. 
 

 

 

 
 

 
 

 
 

 C3(.) 

a 1 

b 0 

c 1 

 C4(.) 

a 1 

b 1 

c 1 

 C2(.) 

a 0 

b 0 

c 1 
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By applying the function M-NC*-CBJ (Algorithm(5)), we obtain 
C  = ((0)+(0)+(1))= 1. 

Incomp-bound(1) = 1, this due is to partially incompatible relation between variables 2, 3 with 
respect of their sets of supported values (these sets are ((2, {a, b}), (3, b)).             

M-lower-bound= cost(CPS) + 
C  + Incomp-bound(1) = 2. 

 

It is important to point that, The M-lower-bound at (2, c) = )(2 cC + M-lower-bound - 

check(2, W)= 1 + 2 - 1 = 2. Since variable 2  W (variable 2 partially incompatible with 
variable 3). Also, lower-bound at (3, a), (3, c) is equal 2. 

 

For comparison, we repeat the same task by using the function NC*-CBJ( ). We obtain 

that the previous lower-bound(LB)= cost(CPS) + C  = 0 + 1 = 1. Evidently, the lower bound 

of adding the value returned by function Incomp-bound(1) is greater than the previous lower 
bound. 

  

5.  The Correctness of an Improved Lower Bound of M-NC*-CBJ 
 

 Now, the complexity of computing the number of disjoint future variable pairs which are 
partially incompatible is obtained via using two sequential steps as follows. First, we suppose n 
is the number of variables and d is the maximum domain size of variables .  

  

1. For every future variable the number of required steps to search for the values with cost zero 
is at most d. Then, the total number of searching steps is O(nd).  

 

2.  For all possible 
2

1)( nn
 pairs of future variables, testing the partially incompatible 

relation   between them is O(
2

1)( 2dnn 
).  

 So, the required complexity is O(nd + 
2

1)( 2dnn 
) approximately O( 22dn ). It is worthy to say 

that this computation is a polynomial time, so the execution time of the whole algorithm is not 
affected by the suggested modification.  
 

The Correctness: 
 

Here, we show that the additional part to lower bound of NC*-CBJ algorithm assists to 

non-decreasing the value of lower bound, i.e., the lower bound of M-NC*-CBJ algorithm is 

improved since in most cases, it is increasing. 
   

In the rest of this section, the following notations are used. F(i) and iW  are the set of 

future variables of i and set of variables (if exist) contribute in incomp-bound(i), respectively. 

Further, 
iC  is the sum of lowest cost of the future variables domain after assigning i. 

 

In the following6, we prove that M-lower-bound; the lower bound of NC*-CBJ plus the 

additional part, is still lower bound. This is done via checking for every variable i  the value of 

                                                 
6 We use static ordering on the set of variables X ={1, 2, ...,n} 
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additional part at next variable i+1. The variable i+1 belongs to 
iW  or not; in each cases we 

show that it assigned with supported or not supported value. These four cases are discussed in 

the next lemmas. 
 

Lemma 5.1.  Let i be a current variable and then, assume that i+1   
iW . Let c be a 

supported value assigned to i+1. For every k   1 if 1



iC = iC
 + k, then                  

Incomp-bound(i+1)   Incomp-bound(i)- k is satisfied.  
 

Proof. As a result of given  i+1 iW  and it has assigned supported value c, then there 

exists at least one future variable, say l, belonging to F(i+1). The cost of all supported values of 

l must increase by one (C-cost(l)=1). Thus, l is the variable which was partially incompatible 
with i+1 in computing incomp-bound(i) as mentioned in definition (4.1). To complete the 
proof, we use mathematical induction on k.  

 

The basis step at k=1 : According to 1



iC = iC
 + 1, there exists exactly one future 

variable whose cost of all its supported values increased by one as shown in Algorithm (5) 
(lines 2-12). Obviously, this future variable is l. Then, for each other future variables x  F(i+1) 

other than l, their domains contain at least one supported value its cost not increased  
(C-cost(x)=0). So, the number of pairs of future variables partially incompatible at i+1 is 

decreased by exactly one pair than the existing in i. This pair is (i+1, l), since i+1 is deleted from 
calculation of incomp-bound(i+1). But this number is affected by new partially incompatible 
pairs that may appear through computation of incomp-bound(i+1). Hence, 
 
   

     Incomp-bound(i+1)  Incomp-bound(i)- 1.  
 

Induction Hypothesis: the statement is true at k = m which means that if 1



iC = iC  + m, 

then Incomp-bound(i+1)   Incomp-bound(i)- m. Now, we show that the statement is true at 

k=m+1. Given 1



iC = iC  + (m+1) means that there are m+1 future variables such that in each 

variable cost of all supported values is increased as given in Algorithm (3) lines (10-17). By 

applying induction hypothesis on m future variables we have Incomp-bound(i+1) 

Incomp-bound(i)- m. Than, adding one variable, say 1l , to the m variables leads to increasing 

cost of all 1l  supported values and also the lowest cost of 1l  is increased. So, it is possible to 

add more values to be supported. Then, we discuss the following two cases depending on the 

possibility of finding       1l  iW : 
  

1. 1l   iW , this means that there exists another variable ,say l , such that 1l    l  and 

P-incomp( ll SS ,
1

)in computing Incomp-bound(i) see Algorithm (6) lines(12-18). The 

possibility of adding more supported values to 
1
lD  may lead to not satisfaction of 

P-incomp( ll SS ,
1

) at computing Incomp-bound(i+1). Hence, Incomp-bound(i+1)  

Incomp-bound(i)- m -1. 
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 2.  
1l   

iW . Then, we have two subcases. 

        (a) 
1l   

1iW  Incomp-bound(i+1)  Incomp-bound(i)- m.  

  (b) 
1l   

1iW  , there exists another variable ,say 
2l , such that 

1l  2l  and       

P-incomp(
21

, ll SS ) at computing Incomp-bound(i+1) as shown in algorithm (6) (lines 

12-17). When 
2l  iW , then Incomp-bound(i+1) > Incomp-bound(i)- m. Otherwise, 

we have   Incomp-bound(i+1)  Incomp-bound(i)- m.  

  
 From the two cases 1 and 2, we have Incomp-bound(i+1) Incomp-bound(i)- (m+1).     

 

Lemma 5.2. Let i be a current variable and then, assume that i+1   iW . Let c be a 

non-supported value, i.e., 0>)(1 cCi , assigned to i+1. For every k   0 if 1



iC = iC
 + k, 

then Incomp-bound(i+1)  Incomp-bound(i) - k - 1 is satisfied.  
 

Proof. It is easy to deduce the validity of the required statement using mathematical induction 

on k as was done in the proof of Lemma (5.1).  
 

The basis step at k=0 : substituting k = 0, we have 1



iC = iC . Then, for each future 

variables  x  F(i+1), their domains contain at least one supported value and its cost not 
increased (C-cost(x)= 0) as given in Algorithm (3) lines (10-17). So, the number of pairs of 
future variables partially incompatible at i+1 is decreased by exactly one pair than the existing 

number of partially incompatible pairs at i. Obviously, the removed pair includes i+1, since i+1 
is deleted from the calculation of incomp-bound(i+1). But, this number is affected by new 

partially incompatible pairs that possibe appeare through the computation of 
incomp-bound(i+1).              
 Hence, Incomp-bound(i+1)  Incomp-bound(i)- 1. 

 

It is easy to follow the same proof of Lemma (5.1) by using induction hypothesis at k = m 

which is if 1



iC = iC  + m, then Incomp-bound(i+1)  Incomp-bound(i) - m - 1.                                  
  

Lemma 5.3.  Let i be a current variable and then, assume that i+1   iW . Let c be any value 

belongs to 1iD  assigned to i+1. For every k   0 if 1



iC = iC  + k, then        

Incomp-bound(i+1) Incomp-bound(i)-k is satisfied.  
  

Proof. Similar to the above lemmas, we use mathematical induction on k to prove the 

statement. The basis step at k=0: since 1



iC = iC , then for each future variable x   F(i+1), its 

domain contains at least one supported value whose cost doesn't increase (C-cost(x)=0). So, the 
number of pairs of future variables partially incompatible at i still partially incompatible at i+1. 

But this number is affected by new partially incompatible pairs that possible appear through the 
computing of incomp-bound(i+1). Hence, Incomp-bound(i+1) Incomp-bound(i). 
 

Following the same proof of Lemmas 5.1 and 5.2, using induction hypothesis at k = m. If    
1



iC = 
iC  + m then Incomp-bound(i+1)   Incomp-bound(i) - m. So, the proof of this lemma is 

a straightforward.                                                                                                                                                                                                                                                      
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Theorem 5.4.  M-Lower-Bound  produced by M-NC*-CBJ algorithm is a valid lower bound.  
  

Proof. In order to prove that M-Lower-Bound is a lower bound, it should be proven that for 

each variable i, the value computed by 

 M-LB = cost(CSP) + 
C  + Incomp-bound(i)                                    (1) 

   is lower bound. It is sufficient to show that for a current variable i, the following two 
statements are satisfied:   

 1. The value computed by eq (1) records different inconsistencies, i.e., no inconsistency 
recorded  twice. 

 2. The number of inconsistencies of any node descending from i is greater than or equal The 
number of inconsistencies at i.  

 

First, no inconsistency computed by eq (1) was recorded twice due to the following: 

 The value cost(CPS) records inconsistencies between only past variables according to    

Definition 2.1.  

 The value C  records inconsistencies between past and future variables as mentioned in 

Algorithm(5) (lines 2-12).  

 The value Incomp-bound(i) records inconsistencies between future variables only as a 
result  of  Algorithm (6) lines (12-18). As given in line 16 of algorithm (6), no 

inconsistency between future variables was recorded twice since any future variable 
contributes in computing Incomp-bound(i) by at most one.  

 

    Secondly, using Lemma (5.1-5.3) and the mathematical induction on the depth of 
descending nodes from i , it is easy to show that the number of inconsistencies of any node  

descending from i is greater than or equal the number of inconsistencies computed by 
M-Lower-Bound at i. This leads to proving the validity of statement 2.                                                                                                                                             

 

6.  Experimental Results 
 

In this section, we evaluate the contribution of the new lower bound, M-lower-bound, on 
improving the previous one given in [7]. The performances of the two algorithms M-NC*-CBJ 

and NC*-CBJ on random binary CSPs are compared. Every given binary random CSPs are 

characterized by (n, d, 1p , 2p ), where n is the number of variables; d is the number of values 

per variable; 1p  is the graph connectivity (the ratio of existing constraints); 2p  is the 

constraint tightness ( the ratio of forbidden value pairs). The constrained variables and the 
forbidden value pairs are randomly selected [9]. The following problem classes have been 
experimented: 

  

1. (10, 10, 0.4, 2p ), where 2p   starts with 0.4 and increases by 0.02 in each run until 0.98 

2. (10, 10, 0.6, 2p ), where 2p  starts with 0.4 and increases by 0.02 in each run until 0.8. 

3. (10, 10, 0.8, 2p ), where 2p  starts with 0.4 and increases by 0.02 in each run until 0.7. 
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For each problem class and each parameter setting, samples of 50 instances are generated. 

Both algorithms are implemented in C++ and run on PC (2.0 GHZ, Pentium IV). Each problem 
class is solved by NC*-CBJ and M-NC*-CBJ. The two algorithms use static variable ordering 

which is decreasing forward degree, breaking ties with decreasing backward degree as 
mentioned in [3]. Values are always selected by increasing cost. We draw the curves between 

the execution time and total number of assignments against 
2p , respectively, to compare the 

search efforts of M-NC*-CBJ and NC*-CBJ in the three tested classes, as illustrated in Figures 
(1-3). As it can be observed, M-NC*-CBJ improves practically NC*-CBJ in all problem 

classes.  
 

Figure 1(a) illustrates the comparison between the execution of M-NC*-CBJ and 

NC*-CBJ in case of the relation between 
2p  and the CPU-time in milliseconds at 

1p =0.4. 

Clearly, its shown that M-NC*-CBJ outperforms NC*-CBJ by a ratio within 0.64 to 4.18. At 

the same time, we compare between the same algorithms at 0.4=1p  in case of the relation 

between 
2p  and number of assignments as given in Figure 1(b). Also, the performance of 

M-NC*-CBJ is better than NC*-CBJ by a ratio  within 0.94 to 2.98. 

 

    Similarly, Figure 2 shows the same comparisons at 
1p = 0.6. Figure 2(a) show that 

M-NC*-CBJ outperforms NC*-CBJ by a ratio  within 0.81 to 3.51. Figure 2(b) show that 
M-NC*-CBJ outperforms NC*-CBJ by a ratio  within 1.03 to 2.49. 
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Figure 1: (a) The relation between CPU-time and 2p when 1p = 0.4; (b) The relation between the 

number of assignments and 2p when 1p = 0.4 
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Figure 2: (a) The relation between CPU-time and 2p when 1p =0.6; (b) The relation between the 

number of assignments and 2p when 1p =0.6 

 

 

 

 
 

    

 



Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013   ISSN-1110-2586 
 

 
 

 
 

-111- 
 

 

  

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 
 

Figure 3: (a) The relation between CPU-time and 2p when 1p =0.8; (b) The relation between the 

number of assignments and 2p when 1p =0.8 

     

Finally, Figure 3 illustrates the same comparison at 0.8=1p . Figure 3 (a) shows the 

curves of the relation between 2p  and CPU-time in millisecond. Evidentely, from figure 3(a), 

the performance of M-NC*-CBJ is much better than NC*-CBJ with a ratio  within 1.23 to 

3.29. In addition, figure 3(b) gives the same conclusion when drawing the curves  between 2p  

and the number of assignments i.e., the ratio of the perofrmance between the two algorithms 
varies within 1.33 to 2.33.  

Through the curves of our experimental results once can observe that the improvement 

factor is increasing with the increase in constraint tightness ( 2p ). 
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7.  Conclusion and Future Work 
 

Branch and Bound (BB) is a general algorithm for finding optimal solutions of various 
optimization problems, especially Max-CSPs. The efficiency of this algorithm depends 

critically on the effectiveness of the lower bound. Any increment in the lower bound causes 
large gains in the search space reduction. As a result of this reduction the  required solution is 

obtained more quickly.  In this paper, we give a new bound resulting from the proposed 
partially incompatible relation between future variables. Adding this bound to the lower bound 
of NC*-CBJ algorithm leads to a new improving lower bound denoted by M-Lower-Bound. 

Then, we prove the validity of M-Lower-Bound and demonstrate its effect on the M-NC*-CBJ 
algorithm. 

 
Furthermore, the experimental results affirmed that the efficiency and performance of 

M-NC*-CBJ algorithm are better than the previous NC*-CBJ algorithm. According to the 

paper's results, we conclude that the lower bound quality remains the major issue in algorithms  
for solving Max-CSPs. 

 
In future work, we suggest applying the introduced modification of lower bound to other 

advanced consistency properties such as AC* and FDAC. 
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