
Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-93-

Partial ARTIAL Incompatible based Lower Bound of NC* For

MAX-CSPs

 Ashraf M. Bhery, Soheir M. Khamis, and Wafaa A. Kabela

Division of Computer Science, Department of Mathematics,

Faculty of Science, Ain Shams University, Cairo, Egypt.
bhery_as@yahoo.com, soheir_khamis@hotmail.com, wafaa_ai2000@yahoo.com

Abstract

Maximal Constraint Satisfaction Problems (Max-CSPs) are constraint optimization

problems, in which the goal is to maximize the number of satisfied constraints. Max-CSPs are,
in general, solved using Branch and Bound (B&B) algorithms. Their respective efficiency

highly depends on the quality of the lower bound. The naive B&B has been improved by using
consistency maintenance procedures and conflict backjumping. In this paper, the authors give a
new treatment for improving NC*-CBJ algorithm for solving a Max-CSP which is the B&B

algorithm using advanced Node Consistency procedure (NC*) and performing
Conflict-directed Backjumbing (CBJ), [17]. The goal of this improvement is increasing the

lower bound of NC*-CBJ via taking into account more inconsistencies which resulted from the
proposed partially incompatible relation between the future variables. The introduced treatment
leads to suggesting new algorithm, M-NC*-CBJ, which is a natural successor of NC*-CBJ

algorithm including the modification of the lower bound. By comparing with the results of
NC*-CBJ, the experimental results of M-NC*-CBJ on random CSPs show improvement both

in execution times and number of assignments.

Keywords : Constraint satisfaction; Max-CSP; Branch and Bound; Lower bound;

Node consistency; NC*-CBJ.

1. Introduction

The Constraint Satisfaction Problem (CSP) is a powerful and efficient framework for
modeling and solving many real world problems. Some well known examples are: Scheduling,
planning, network management and configuration. Due to the ability of (CSP) techniques it

has helped in the development of tackling some recent applications including: Computer
graphics (expressing geometric coherence in the case of scene analysis, drawing programs, user

interfaces), natural language processing (construction of efficient parsers), database systems (to
ensure and/or restore consistency of the data), molecular biology (DNA sequencing, chemical
hypothesis reasoning), business applications (option trading), electrical engineering (to locate

faults), circuit design (to compute layouts) and transport problems.

The Constraint Satisfaction Problem (CSP) framework allows researchers to define
problems in a declarative way, quite independently from the solving process. However, when

the problem is over-constrained, the answer no solution is generally unsatisfactory. In this case,

mailto:soheir_khamis@hotmail.com

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-94-

the goal is, often, to find an assignment satisfying as many constraints as possible which is

known as a Maximal constraint satisfaction problem (Max-CSP). A Max-CSP is a constraint
problem whose solutions maximize the number of satisfied constraints [2].

Many algorithms have been developed for Max-CSP using Branch and Bound (B&B)
methods combined with heuristics for selecting the variables and the values at each step of the

search tree, e.g., [2, 4, 14]. Their respective efficiency highly depends on the quality of the
lower bound. Many lower bound computation methods for branch and bound have been
developed for solving Max-CSP see e.g., [2, 3, 5, 15]. Those methods can be considered as

procedures that search for disjoint inconsistent constraints in the Max-CSP instance under
consideration. The difference among them is the technique used to detect inconsistencies. In

[2], the authors computed a lower bound of inconsistencies from the set of assigned variables.
Furthermore, the effect of these variables on unassigned ones by using forward checking. This
lower bound is improved by including inconsistencies among future variables by the usage of

Directed Arc consistency (DAC) [15]. Further improvements have been introduced in [3] and
[16]. Recent works focus on the exploitation of propagation mechanisms to improve the value

of the lower bound, through soft arc-consistency algorithms ([6, 11, 12], initially introduced in
[1]) or by using conflict-set based algorithms [10]. These algorithms detect violations which are
ignored by the previous reference algorithm PFC-MRDAC [5].

One of the most successful approaches to build lower bounds has been obtained by

extending some local consistency notions to weighted CSP 1 . In [7], Larrosa and schiex
presented new consistency maintenance procedures based on their work which introduced in

[6]. Some examples of this procedures are NC* for Node Consistency and AC* for Arc
Consistency. In [17], NC*-CBJ algorithm was obtained by adding conflict directed
backjumping (CBJ) to branch and bound, which maintains NC*. This addition leads to

improving the performance of branch and bound algorithm for solving Max-CSPs.

In this paper, the proposed modification is to improve a lower bound of NC*-CBJ. Its idea

depends on taking into account more inconsistencies which resulted from the given partially
incompatible relation between the future variables. NC*-CBJ algorithm that including the

modification of the lower bound, leads to suggesting M-NC*-CBJ algorithm. By comparing
with the results of NC*-CBJ, the experimental results of M-NC*-CBJ on random CSPs show
improvement both in CPU-time s and number of assignments.

This paper is organized as follows. In section 2, some preliminaries and definitions
required in the rest of the paper are introduced. Section 3 includes a brief description of iterative

NC*-CBJ algorithm which is B&B algorithm combined with NC* and CBJ. In section 4, the
new partially incompatible relation is defined. Furthermore, the modified NC*-CBJ algorithm

that depends on the new lower bound, M-NC*-CBJ, is described. Section 5 includes analysis of
complexity of the additional part to NC*-CBJ lower bound and its correctness. Moreover, we
prove that M-NC*-CBJ lower bound is still lower bound. Section 6 contains experimental

results of M-NC*-CBJ showing a clear performance improvement in both execution time and
number of assignments. Finally, section 7 presents the conclusion of the paper and some

directions of future work.

1 Max-CSP is a special case of weighted CSP in which each constraint has an associated weight, and the goal is to find a

solution that maximizes the total weight of the satisfied constraints.

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-95-

2. Basic Definitions

This section introduces the main notations and definitions that are used throughout the

paper. In the following, the definitions of a Maximal Constraint Satisfaction problem
(Max-CSP) and the local Node Consistency property (NC*) used for solving a Max-CSP are
given.

A classical binary Constraint Satisfaction Problem (CSP) is a triple Z = (X, D, R), where

X = {1, 2, ..., n} is a set of variables, D = { nDDD ,...,, 21 } is a set of domains of the variables in

X, and R is a set of (possibly) unary or binary constraints defined on subsets (one or two) of

variables of X. Each variable i X has a finite domain iD D of values that can be

assigned to it. (i, a) denotes the assignment of value a iD to variable i. A partial solution, t,

is an ordered set of values assigned to the ordered set of variables tX X (namely, the k-th

element of t is the value assigned to the k-th element of tX). A unary constraint iR is a subset

of iD containing the permitted assignments to variable i. A binary constraint ijR is a set o f

pairs from ji DD containing the permitted simultaneous assignments to i and j. Binary

constraints are symmetric, i.e., jiij RR . The set of (one or two) variables whose values are

restricted by a constraint is called its scope. A partial solution t is consistent if it satisfies all

constraints whose scope are included in tX . It is globally consistent if it can be extended to a

complete consistent assignment. A solution to CSP consists of finding a consistent complete

assignment [13]. In some cases, a CSP instance may be over-constrained and thus, admits no
such solution. We can then be interested in finding a complete instantiation that best respects
the set of constraints. In this work, we consider the Maximal Constraint satisfaction Problem.

An optimal solution of a Max-CSP is a complete instantiation satisfying maximum number of
constraints, i.e., violating the minimum number of constraints [2].

Existing algorithms for solving Max-CSP are basically designed to follow a branch and

bound (BB &) schema. These algorithms perform successive assignments of values to

variables through a depth-first traversal of the search tree. In the search tree, internal nodes

represent partial assignments of values to variables. In addition, a leaf that ends a branch of

|| X nodes stands for a complete assignment. At each node, assigned variables are called Past

(P)2 while unassigned variables are called Future (F). B&B algorithms associate a cost to each

node in the search tree. The cost of a node is the number of constraints violated by its

assignment. In the following, the formal definition of the cost of the current partial solution

(CPS) is given.

2 If t is partial assignment, then PX t =

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-96-

Definition 2.1. Cost(CPS) = b)(a,r ijj<iP,ji, such that

),(barij = {
1 𝑖𝑓 ,),(ijij RbaR

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

where a and b are the values assigned to past variables i and j, respectively.

The main idea of B&B is simple and clear. In a B&B algorithm, two bounds are
constantly maintained which are determined during execution. An Upper Bound (UB) is the

cost of the best solution found so far and is initialized to infinity. A Lower Bound (LB) is an
underestimation of the minimal number of constraints that will become unsatisfied if the
current partial assignment is completed. At every node, the B&B algorithm compares the UB

with the LB. If LB UB, the algorithm prunes the subtree below the current node and then
backtracks (backjumping) to a higher level in the search tree. If LB < UB, the algorithm tries
to find a better solution by extending the current partial solution by instantiating one more

variable. A current partial-solution, CPS, is expanded by assigning a value to a variable 3 which
is not included in it.

In the description of the maintenance local consistency and CBJ in a B&B-NC*-CBJ

algorithm, the following definition is used. In the definition, represents a list concatenation

Definition 2.2. For i F and a iD , the cost of (i, a), iC (a), is the number of past

variables which its assignments are inconsistent with (i, a) which is determined by

 iC (a) =)b (a,r
ji pj

,

where b is the value assigned to past variable j.

Additionally, the conflict- list of (i, a), iL (a), is the ordered list which includes all the

assignments in the current solution that inconsistent with (i, a) which is given by

 iL (a) =),(1=),(, bjbaijrPj ,

and the length of iL (a) is equal to iC (a).

By using the previous definition, the current-cost and the conflist-set of a variable4 can

now be defined. In case of an assigned variable, its current cost is the cost of its assigned value;

otherwise, the current-cost is the minimal cost of a value in its current domain.

3 Values are always assigned using the M -cost heuristic i.e. the next value to be assigned is the value with the smallest cost in

the variable’s current domain.
4 Definition 2.3 and 2.4 are informally founded in [17].

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-97-

Definition 2.3. Given a variable i the current-cost of i, C-cost(i), is given by

)(icostC =

{

)(aCi i),tovalueassignedtheis(aP)i(if

(a)
i

Cmin
iDa

 .Fiif . .

Definition 2.4. Let an integer value c be the cost of variable i. A conflict-set, S-conflict(i, c), of

i with cost c is given by

S-conflict(i, c) =))(,(aLcfirst iiDa
.

Where the function first(c,)(aLi) returns the first (most recent) c assignments in)(aLi . If

length of)(aLi is less than c, then the function returns all assignments in)(aLi .

 Max-CSPs are usually solved with a tree produced from branch-and-bound in which each

node is a partial solution. To accelerate the search, local consistency properties are widely used

to transform the sub-problem at each node of the tree to an equivalent simpler one. The simplest
local consistency property is the following advanced node consistency (NC*)5. For defining

NC* property, assume the existence of a zero-arity constraint, C , whose initial value is equal

to zero.

Definition 2.5. Let Z = (X, D, R) be a binary Max-CSP and k > || R ; the number of

constraints in R. A variable i is node-consistent iff

i) a iD , (C + iC (a)) < k.

ii) a iD such that)(aCi = 0.

 Such a value a is support for the variable node consistency. Then, A Max-CSP is node

consistence iff every variable is node consistent.

Obviously, the property of node consistency can be enforced in time and space O(nd),

where n is number of the variables and d is the maximum domain size.

3. Solving Max-CSP by B&B-NC*-CBJ

In this section, we consider an improved version of the B&B algorithm which is known

by NC*-CBJ [17], for Max-CSP. NC*-CBJ maintains local consistency procedure (NC*) with
conflict-directed backjumbing (CBJ). In the following, the pseudo-code of B&B-CBJ
algorithm is given. This algorithm is iterative and it includes functions that perform consistency

checking and conflict-directed backjumbing.

5 This definition is a special case of the general definition introduced in [6] for Weighted CSP. The NC* considered in this

paper is for Max-CSP.

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-98-

Algorithm (1)

Procedure B&B-CBJ

1: begin

2: current state ← initial state;

3: CPS ← empty-assignment;

4: GCS ← empty-assignment;

5: i ← 0;

6: while i ≥ 0 do

7: if i = n then

8: Upper-Bound ← Lower-Bound ;

9: i ← i - 1;

10: else

11: for all a ∈ Di do

12: temp-state ← current-state;

13: update-state (i, a);

14: if local-consistent(i) then

15: states[i] ← current-state;

16: current-state ← temp-state;

17: i ← i + 1;

18: end if

19: end for

20: end if

21: i ← find-culprit-variable();

22: current-state← states[i];

23: end while

24: end.

 In the B&B-CBJ algorithm, a Global Conflict Set (GCS) that includes the union of the

conflict sets of all assigned and unassigned variables is also maintained. The B&B-CBJ

algorithm consists of procedure update-state, function local-consistency, and function

find-culprit-variable. The description of function find-culprit-variable is given in Algorithm(2)

that is activated when the algorithm B&B-CBJ executes a backjump step. Find-culprit-variable

returns the latest assignment (the one with the highest variable index) in the GCS. When the

GCS is empty, function find-culprit-variable returns -1 and hence the execution of B&B-CBJ

algorithm will terminate. Procedure update-state() and function local-consistent() are

described as follows.

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-99-

Algorithm (2)

Function find-culprit-variable(i)

1: begin

2: if GCS = ∅ then

3: return -1 ;
4: end if

5: culprit ← latest assignment in GCS ;

6: GCS ← GCS \ culprit ;
7: return culprit ;

8: end.

Update with CBJ

In this part, we present the procedure update-state() which take the new assignment as

input. In Lines 2,3 from this procedure the new assignment is added to the Current Partial

Solution (CPS) and the cost(CPS) is increased by the value iC (val), respectively. Then, Lines

(4-9) are used to add a conflict set of assigned variable i to GCS. Finally, Lines (10-17) are

designed to update the cost and conflict- list of each value in the domain of future variables

according to the added new assignment.

Algorithm (3)

Procedure update-state(i, val)

1: begin

2: add (i, val) to CPS;

3: cost(CPS)← cost(CPS) + Ci(val);

4: for all a ∈ Di do

5: for 1 to Ci(val) do

6: GCS ←GCS ∪ first-element in (Li(a));

7: delete first-element from (Li(a));
8: end for

9: end for

10: for j = i + 1 to n - 1 do

11: for all a ∈ Dj do

12: if conflicts((i, val), (j, a)) then

13: Cj(a) ← Cj + 1;

14: Lj(a) ← Lj(a)⊕(i, val);

15: end if

16: end for

17: end for

18: end.

 NC*-CBJ

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-100-

In general, a local-consistency function is used to reduce domains of unassigned

variables. In the next, we restricted to advanced node consistency with CBJ named NC*-CBJ,
as described in [17]. In NC*-CBJ, the algorithm computes a global lower bound of the number

of unsatisfied constraints as the cost of current partial solution plus sum of minimum cost of
each future variable. Algorithm(4) enforces NC* and maintains CBJ.

Algorithm (4)

Function NC*- CBJ(i)

1: begin

2: for j ← i + 1 to n - 1 do

3: cj ← C-cost(j);

4: for all a ∈ (Dj ∪ jD̂) do

5: Cj(a) ← Cj(a) - cj ;
6: for 1 to cj do

7: GCS ← GCS ∪ first-element(Lj(a));

8: delete first-element(Lj(a));
9: end for

10: end for

11: C∅ ← C∅ + cj ;

12: end for
13: lower bound ← cost(CPS) + C∅ ;

14: for j ← i + 1 to n - 1 do

15: for all a ∈ Dj do

16: if Cj(a) + Lower-Bound ≥ Upper-Bound then

17: jD̂ ←
 jD̂ ∪ {a};

18: Dj ← Dj \ {a};

19: end if

20: end for

21: end for

22: return (Lower-Bound < Upper-Bound);
23: end.

In NC*-CBJ, a global cost C is maintained which is initially zero. For each domain

jD an additional set, jD̂ , is maintained which holds the values that were removed from jD .

After every assignment, all costs of all values are updated as in update-state procedure. Then,

for each future variable j F the minimal cost of all values in jD , jc , is calculated (line 3). In

the loop from lines (4-12), all given cost for values determined via using algorithm(3) is

decreased by jc . As a result of this substraction, the domain of every unassigned variable

includes at least one value whose cost is zero. Then, for each produced value the first jc

assignments in its conflict- list are removed and added to GCS. And therefore, the GCS includes

the union of the conflict sets of all assigned and unassigned variables. In line 13, a global lower
bound, LB, on the number of inconsistency constraints is calculated as the sum of the current

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-101-

solution’s cost and C

, which is next used to prune values against the upper bound. If any

lower bound of a value which is given by the sum of cost(CPS), C

, and its own cost, exceeds

the limit of the upper bound then the value is removed from the variable’s domain as shown in
(lines 14-21).

4. Partial Incompatible Based Lower Bound of NC*

In this section, we define partially incompatible relation over set of variables of the given

CSP. Upon this relation the algorithm M-NC*-CBJ calculates a new quantity by which the

lower bound of NC*-CBJ algorithm is improved. The modified bound, M-lower-bound, is

based on successive checking for the validity of partial incompatibility pairs among future

variables. In the following, the partial incompatible relation between two variables is defined.

Definition 4.1. Let i and j be two variables in a CSP and let kS kD for k {i, j}. i and j

are said to be partially incompatible with respect to iS and jS denoted by P-incomp(ji SS ,)

if and only if ijR such that a iS and b jS we have (a, b) ijR .

The introduced modification of NC*-CBJ function named M-NC*-CBJ, is described in

Algorithm (5). In this algorithm lines (1-12) are the same as in NC*-CBJ() given in Algorithm

(4). In the suggested algorithm, a set W is used to store the future variables which contribute in

the new bound. W is testing later to modify the lower bound; at the beginning W is an empty set.

For current variable i, the algorithm computes a local bound using a function Incomp-bound(i)

which is described in details in Algorithm(6). The returned value by Incomp-bound(i)

corresponds to the number of disjoint future variable pairs which are partially incompatible

with respect of their sets of supported values. The computed value by the function

Incomp-bound(i), is added to the previous lower bound that is computed by NC*-CBJ as stated

in (line 14). In lines (15-28), the new lower bound (M-lower-bound) is used to prune values

against an upper-bound. Values are pruned according to its cost. If the cost of a value a of future

variable j is zero, then this value is pruned when the M-lower-boun Upper-Bound.

Otherwise, the value is pruned if (jC (a)+ M-lower-bound - (check(j,

W))) Upper-Bound) as mentioned in line 23. The function check (j, W) returns one if the

variable jW; otherwise returns zero.

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-102-

Algorithm (5):

Function M- NC*- CBJ(i)

1: begin

2: for j ← i + 1 to n - 1 do

3: cj ← C-cost(j);

4: for all a ∈ (Dj ∪ jD̂) do

5: Cj(a) ← Cj(a) - cj ;

6: for 1 to cj do

7: GCS ← GCS ∪ first-element(Lj(a));

8: delete first-element(Lj(a));
9: end for

10: end for

11: C∅ ← C∅ + cj ;

12: end for

13: W ← ∅

14: M-lower bound ← cost(CPS) + C∅ + Incomp-bound(i) ;

15: for j ← i + 1 to n - 1 do

16: for all a ∈ Dj do

17: if Cj(a) = 0 then

18: if (M-Lower-Bound ≥ Upper-Bound) then

19:
 jD̂ ← jD̂ ∪ {a};

20: Dj ← Dj \ {a};

21: end if

22: else

23: if (Cj(a) + M-Lower-Bound - check(j, W) ≥ Upper-Bound) then

24: jD̂ ← jD̂ ∪ {a};

25: Dj ← Dj \ {a};

26: end if

27: end if

28: end for

29: end for

30: return (Lower-Bound < Upper-Bound);

31: end.

To complete the description of Algorithm (5) we give some details on the main idea of
computing the new bound, Incomp-bound(i) function. In Which, for each future variable j we

add it to a set F which is including the future variables of the current variable. Then, construct a

set jS which contains all supported values a, where a jD such that jC (a) = 0 as shown in

(lines 5-10). Next, for each two different future variables j and k we check wether or not they

are partially incompatible with respect to jS and kS . If they are partially incompatible, then

the bound is increased by one. After that, j and k are added to set W and removed from F (line 12-17).
Otherwise, get a new pair of variables that belongs to F. When there is no more partially incompatible

variables among future variables, the computed value is returned by the algorithm.

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-103-

Algorithm (6)

Function Incomp-bound(i)

1: begin

2: F ← ∅ ;
3: for j = i+1 to n-1 do

4: F ← F ∪ {j};
5: for all a∈ Dj do

6: if Cj(a) = 0 then

7: add a to Sj ;
8: end if

9: end for

10: end for

11: bound = 0;

12: for all j, k ∈ F do

13: if ((j≠ k) & (P-incomp(Sj , Sk))) then

14: bound ← bound + 1;
15 W ← W ∪ {j, k};

16: F ← F \ {j, k};

17: end if

18: end for

19: return bound;
20: end.

 As illustrative application for showing the improvement of a lower bound is given in the
following example.

Example

Given binary CSP Z = (X, D, R) having X= {1, 2, 3, 4}, iD = {a, b,c} for i {1, ..., 4},

and R= { 12R , 13R , 14R , 23R , 24R , 34R }, where 12R = { (a, a) , (a, b), (c, a) }, 13R = {

(a, b), (b, a) , (c, b), (b, c) }, 14R = { (b, c) , (b, a), (c, b) }, 23R = {(a, c) ,(c, b) }, 24R

= {(b, a) ,(b, c) ,(c, a) }, 34R = { (b, b) ,(c, c) ,(a, b) }.

Executing the steps of algorithm(1) including modification, one can obtain the following:

- Resulting in line (1-13) is CPS = { (1, a)}, cost(CPS)=0, F= { 2, 3, 4} and cost of each value

in the domain of future variables is updating as follows.

 C3(.)

a 1

b 0

c 1

 C4(.)

a 1

b 1

c 1

 C2(.)

a 0

b 0

c 1

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-104-

By applying the function M-NC*-CBJ (Algorithm(5)), we obtain
C = ((0)+(0)+(1))= 1.

Incomp-bound(1) = 1, this due is to partially incompatible relation between variables 2, 3 with
respect of their sets of supported values (these sets are ((2, {a, b}), (3, b)).

M-lower-bound= cost(CPS) +
C + Incomp-bound(1) = 2.

It is important to point that, The M-lower-bound at (2, c) =)(2 cC + M-lower-bound -

check(2, W)= 1 + 2 - 1 = 2. Since variable 2 W (variable 2 partially incompatible with
variable 3). Also, lower-bound at (3, a), (3, c) is equal 2.

For comparison, we repeat the same task by using the function NC*-CBJ(). We obtain

that the previous lower-bound(LB)= cost(CPS) + C = 0 + 1 = 1. Evidently, the lower bound

of adding the value returned by function Incomp-bound(1) is greater than the previous lower
bound.

5. The Correctness of an Improved Lower Bound of M-NC*-CBJ

 Now, the complexity of computing the number of disjoint future variable pairs which are
partially incompatible is obtained via using two sequential steps as follows. First, we suppose n
is the number of variables and d is the maximum domain size of variables .

1. For every future variable the number of required steps to search for the values with cost zero
is at most d. Then, the total number of searching steps is O(nd).

2. For all possible
2

1)(nn
 pairs of future variables, testing the partially incompatible

relation between them is O(
2

1)(2dnn
).

 So, the required complexity is O(nd +
2

1)(2dnn
) approximately O(22dn). It is worthy to say

that this computation is a polynomial time, so the execution time of the whole algorithm is not
affected by the suggested modification.

The Correctness:

Here, we show that the additional part to lower bound of NC*-CBJ algorithm assists to

non-decreasing the value of lower bound, i.e., the lower bound of M-NC*-CBJ algorithm is

improved since in most cases, it is increasing.

In the rest of this section, the following notations are used. F(i) and iW are the set of

future variables of i and set of variables (if exist) contribute in incomp-bound(i), respectively.

Further,
iC is the sum of lowest cost of the future variables domain after assigning i.

In the following6, we prove that M-lower-bound; the lower bound of NC*-CBJ plus the

additional part, is still lower bound. This is done via checking for every variable i the value of

6 We use static ordering on the set of variables X ={1, 2, ...,n}

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-105-

additional part at next variable i+1. The variable i+1 belongs to
iW or not; in each cases we

show that it assigned with supported or not supported value. These four cases are discussed in

the next lemmas.

Lemma 5.1. Let i be a current variable and then, assume that i+1
iW . Let c be a

supported value assigned to i+1. For every k 1 if 1

iC = iC
 + k, then

Incomp-bound(i+1) Incomp-bound(i)- k is satisfied.

Proof. As a result of given i+1 iW and it has assigned supported value c, then there

exists at least one future variable, say l, belonging to F(i+1). The cost of all supported values of

l must increase by one (C-cost(l)=1). Thus, l is the variable which was partially incompatible
with i+1 in computing incomp-bound(i) as mentioned in definition (4.1). To complete the
proof, we use mathematical induction on k.

The basis step at k=1 : According to 1

iC = iC
 + 1, there exists exactly one future

variable whose cost of all its supported values increased by one as shown in Algorithm (5)
(lines 2-12). Obviously, this future variable is l. Then, for each other future variables x F(i+1)

other than l, their domains contain at least one supported value its cost not increased
(C-cost(x)=0). So, the number of pairs of future variables partially incompatible at i+1 is

decreased by exactly one pair than the existing in i. This pair is (i+1, l), since i+1 is deleted from
calculation of incomp-bound(i+1). But this number is affected by new partially incompatible
pairs that may appear through computation of incomp-bound(i+1). Hence,

 Incomp-bound(i+1) Incomp-bound(i)- 1.

Induction Hypothesis: the statement is true at k = m which means that if 1

iC = iC + m,

then Incomp-bound(i+1) Incomp-bound(i)- m. Now, we show that the statement is true at

k=m+1. Given 1

iC = iC + (m+1) means that there are m+1 future variables such that in each

variable cost of all supported values is increased as given in Algorithm (3) lines (10-17). By

applying induction hypothesis on m future variables we have Incomp-bound(i+1)

Incomp-bound(i)- m. Than, adding one variable, say 1l , to the m variables leads to increasing

cost of all 1l supported values and also the lowest cost of 1l is increased. So, it is possible to

add more values to be supported. Then, we discuss the following two cases depending on the

possibility of finding 1l iW :

1. 1l iW , this means that there exists another variable ,say l , such that 1l l and

P-incomp(ll SS ,
1

)in computing Incomp-bound(i) see Algorithm (6) lines(12-18). The

possibility of adding more supported values to
1
lD may lead to not satisfaction of

P-incomp(ll SS ,
1

) at computing Incomp-bound(i+1). Hence, Incomp-bound(i+1)

Incomp-bound(i)- m -1.

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-106-

 2.
1l

iW . Then, we have two subcases.

 (a)
1l

1iW Incomp-bound(i+1) Incomp-bound(i)- m.

 (b)
1l

1iW , there exists another variable ,say
2l , such that

1l 2l and

P-incomp(
21

, ll SS) at computing Incomp-bound(i+1) as shown in algorithm (6) (lines

12-17). When
2l iW , then Incomp-bound(i+1) > Incomp-bound(i)- m. Otherwise,

we have Incomp-bound(i+1) Incomp-bound(i)- m.

 From the two cases 1 and 2, we have Incomp-bound(i+1) Incomp-bound(i)- (m+1).

Lemma 5.2. Let i be a current variable and then, assume that i+1 iW . Let c be a

non-supported value, i.e., 0>)(1 cCi , assigned to i+1. For every k 0 if 1

iC = iC
 + k,

then Incomp-bound(i+1) Incomp-bound(i) - k - 1 is satisfied.

Proof. It is easy to deduce the validity of the required statement using mathematical induction

on k as was done in the proof of Lemma (5.1).

The basis step at k=0 : substituting k = 0, we have 1

iC = iC . Then, for each future

variables x F(i+1), their domains contain at least one supported value and its cost not
increased (C-cost(x)= 0) as given in Algorithm (3) lines (10-17). So, the number of pairs of
future variables partially incompatible at i+1 is decreased by exactly one pair than the existing

number of partially incompatible pairs at i. Obviously, the removed pair includes i+1, since i+1
is deleted from the calculation of incomp-bound(i+1). But, this number is affected by new

partially incompatible pairs that possibe appeare through the computation of
incomp-bound(i+1).
 Hence, Incomp-bound(i+1) Incomp-bound(i)- 1.

It is easy to follow the same proof of Lemma (5.1) by using induction hypothesis at k = m

which is if 1

iC = iC + m, then Incomp-bound(i+1) Incomp-bound(i) - m - 1.

Lemma 5.3. Let i be a current variable and then, assume that i+1 iW . Let c be any value

belongs to 1iD assigned to i+1. For every k 0 if 1

iC = iC + k, then

Incomp-bound(i+1) Incomp-bound(i)-k is satisfied.

Proof. Similar to the above lemmas, we use mathematical induction on k to prove the

statement. The basis step at k=0: since 1

iC = iC , then for each future variable x F(i+1), its

domain contains at least one supported value whose cost doesn't increase (C-cost(x)=0). So, the
number of pairs of future variables partially incompatible at i still partially incompatible at i+1.

But this number is affected by new partially incompatible pairs that possible appear through the
computing of incomp-bound(i+1). Hence, Incomp-bound(i+1) Incomp-bound(i).

Following the same proof of Lemmas 5.1 and 5.2, using induction hypothesis at k = m. If
1

iC =
iC + m then Incomp-bound(i+1) Incomp-bound(i) - m. So, the proof of this lemma is

a straightforward.

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-107-

Theorem 5.4. M-Lower-Bound produced by M-NC*-CBJ algorithm is a valid lower bound.

Proof. In order to prove that M-Lower-Bound is a lower bound, it should be proven that for

each variable i, the value computed by

 M-LB = cost(CSP) +
C + Incomp-bound(i) (1)

 is lower bound. It is sufficient to show that for a current variable i, the following two
statements are satisfied:

 1. The value computed by eq (1) records different inconsistencies, i.e., no inconsistency
recorded twice.

 2. The number of inconsistencies of any node descending from i is greater than or equal The
number of inconsistencies at i.

First, no inconsistency computed by eq (1) was recorded twice due to the following:

 The value cost(CPS) records inconsistencies between only past variables according to

Definition 2.1.

 The value C records inconsistencies between past and future variables as mentioned in

Algorithm(5) (lines 2-12).

 The value Incomp-bound(i) records inconsistencies between future variables only as a
result of Algorithm (6) lines (12-18). As given in line 16 of algorithm (6), no

inconsistency between future variables was recorded twice since any future variable
contributes in computing Incomp-bound(i) by at most one.

 Secondly, using Lemma (5.1-5.3) and the mathematical induction on the depth of
descending nodes from i , it is easy to show that the number of inconsistencies of any node

descending from i is greater than or equal the number of inconsistencies computed by
M-Lower-Bound at i. This leads to proving the validity of statement 2.

6. Experimental Results

In this section, we evaluate the contribution of the new lower bound, M-lower-bound, on
improving the previous one given in [7]. The performances of the two algorithms M-NC*-CBJ

and NC*-CBJ on random binary CSPs are compared. Every given binary random CSPs are

characterized by (n, d, 1p , 2p), where n is the number of variables; d is the number of values

per variable; 1p is the graph connectivity (the ratio of existing constraints); 2p is the

constraint tightness (the ratio of forbidden value pairs). The constrained variables and the
forbidden value pairs are randomly selected [9]. The following problem classes have been
experimented:

1. (10, 10, 0.4, 2p), where 2p starts with 0.4 and increases by 0.02 in each run until 0.98

2. (10, 10, 0.6, 2p), where 2p starts with 0.4 and increases by 0.02 in each run until 0.8.

3. (10, 10, 0.8, 2p), where 2p starts with 0.4 and increases by 0.02 in each run until 0.7.

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-108-

For each problem class and each parameter setting, samples of 50 instances are generated.

Both algorithms are implemented in C++ and run on PC (2.0 GHZ, Pentium IV). Each problem
class is solved by NC*-CBJ and M-NC*-CBJ. The two algorithms use static variable ordering

which is decreasing forward degree, breaking ties with decreasing backward degree as
mentioned in [3]. Values are always selected by increasing cost. We draw the curves between

the execution time and total number of assignments against
2p , respectively, to compare the

search efforts of M-NC*-CBJ and NC*-CBJ in the three tested classes, as illustrated in Figures
(1-3). As it can be observed, M-NC*-CBJ improves practically NC*-CBJ in all problem

classes.

Figure 1(a) illustrates the comparison between the execution of M-NC*-CBJ and

NC*-CBJ in case of the relation between
2p and the CPU-time in milliseconds at

1p =0.4.

Clearly, its shown that M-NC*-CBJ outperforms NC*-CBJ by a ratio within 0.64 to 4.18. At

the same time, we compare between the same algorithms at 0.4=1p in case of the relation

between
2p and number of assignments as given in Figure 1(b). Also, the performance of

M-NC*-CBJ is better than NC*-CBJ by a ratio within 0.94 to 2.98.

 Similarly, Figure 2 shows the same comparisons at
1p = 0.6. Figure 2(a) show that

M-NC*-CBJ outperforms NC*-CBJ by a ratio within 0.81 to 3.51. Figure 2(b) show that
M-NC*-CBJ outperforms NC*-CBJ by a ratio within 1.03 to 2.49.

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-109-

Figure 1: (a) The relation between CPU-time and 2p when 1p = 0.4; (b) The relation between the

number of assignments and 2p when 1p = 0.4

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-110-

Figure 2: (a) The relation between CPU-time and 2p when 1p =0.6; (b) The relation between the

number of assignments and 2p when 1p =0.6

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-111-

Figure 3: (a) The relation between CPU-time and 2p when 1p =0.8; (b) The relation between the

number of assignments and 2p when 1p =0.8

Finally, Figure 3 illustrates the same comparison at 0.8=1p . Figure 3 (a) shows the

curves of the relation between 2p and CPU-time in millisecond. Evidentely, from figure 3(a),

the performance of M-NC*-CBJ is much better than NC*-CBJ with a ratio within 1.23 to

3.29. In addition, figure 3(b) gives the same conclusion when drawing the curves between 2p

and the number of assignments i.e., the ratio of the perofrmance between the two algorithms
varies within 1.33 to 2.33.

Through the curves of our experimental results once can observe that the improvement

factor is increasing with the increase in constraint tightness (2p).

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-112-

7. Conclusion and Future Work

Branch and Bound (BB) is a general algorithm for finding optimal solutions of various
optimization problems, especially Max-CSPs. The efficiency of this algorithm depends

critically on the effectiveness of the lower bound. Any increment in the lower bound causes
large gains in the search space reduction. As a result of this reduction the required solution is

obtained more quickly. In this paper, we give a new bound resulting from the proposed
partially incompatible relation between future variables. Adding this bound to the lower bound
of NC*-CBJ algorithm leads to a new improving lower bound denoted by M-Lower-Bound.

Then, we prove the validity of M-Lower-Bound and demonstrate its effect on the M-NC*-CBJ
algorithm.

Furthermore, the experimental results affirmed that the efficiency and performance of

M-NC*-CBJ algorithm are better than the previous NC*-CBJ algorithm. According to the

paper's results, we conclude that the lower bound quality remains the major issue in algorithms
for solving Max-CSPs.

In future work, we suggest applying the introduced modification of lower bound to other

advanced consistency properties such as AC* and FDAC.

References

[1] S. Bistarelli, P. Codognet, Y. Georget, and F. Rossi, "Labeling and Partial Local
Consistency for Soft Constraint Programming", second international workshop on

Practical Aspects of Declarative Languages, PADL00, p. 230-248, 2000.

 [2] E. Freuder, and R. Wallace, "Partial Constraint Satisfaction", Artificial Intelligence, vol.

58, pp. 21-70, 1992.

[3] J. Larrosa and P. Meseguer,"Exploiting the Use of DAC in MAX-CSP", Proceedings of
CP-96, pp. 308-322, 1996.

 [4] J. Larrosa and P. Meseguer, "Partition-based lower bound for Max-CSP", Proceedings of

the th5 International Conference on Principles and Practice of Constraint Programming

(CP-99), pp. 303-315, 1999.

 [5] J. Larrosa, P. Meseguer, and T. Schiex, "Maintaining reversible DAC for Max-CSP",
Artificial Intelligence, vol. 107, pp. 149-163, 1999.

 [6] J. Larrosa, "Node and Arc Consistency in Weighted CSP", Proceedings of the
Eighteenth National Conference on Artificial Intelligence (AAAI-2002), pp. 48-53, 2002.

 [7] J. Larrosa and T. Schiex, "Solving weighted csp by maintaining arc consistency" ,
Artificial Intelligence, vol. 159, pp. 1-26, 2004.

 [8] P. Prosser, "Binary constraint satisfaction problems: some are harder than others",

Proceedings of ECAI-94, pp. 95-99, 1994.

 [9] Random Uniform CSP Generators, http:// www.lirmm.fr/ bessiere/ generator.html, 1996.

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 1, January 2013 ISSN-1110-2586

-113-

[10] J.C. R´egin, T. Petit, C. Bessí ere, and J-F. Puget, "New lower bounds of constraint

violations for over constrained problems", Proceedings of CP, pp. 332-345, 2001.

[11] T. Schiex, "Arc consistency for soft constraints", Proceedings of CP- 2000 Singapore, pp.

411-424, 2000.

[12] T. Schiex, "Une comparaison des coherences darc dans les Max-CSP", Proceedings of
JNPC, pp. 209-223, 2002.

[13] E. Tsang, "Foundations of Constraint Satisfaction", Academic Press, 1993 .

[14] R. J. Wallace and E. Freuder, "Conjunctive width heuristics for maximal constraint

satisfaction", Proceedings of AAAI-93, pp. 762-768, 1993.

[15] R. J. Wallace, "Directed arc Consistency preprocessing", Proceedings of the ECAI-94
Workshop on Constraint Processing (LNCS 923), pp. 121-137, 1994 .

[16] R. J. Wallace, "Enhancements of Branch and Bound Methods for the Maximal Constraint
Satisfaction Problem", Proceedings of AAAI-96, pp. 188-195, 1996.

[17] R. Zivan and A . Meisels, "Conflict directed Backjumping for Max-CSPs", Proceedings
of IJCAI07, pp. 198-204, 2007.

