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Abstract  
  

In this work is proposed one new algorithm for processing of sequences (groups) of 
computer tomography (CT) images, based on the Hierarchical Adaptive PCA (HAPCA). It is 

an approximation of the well-known Principle Component Analysis (PCA), which ensures 
maximum power concentration in the firsh images of the processed group (called "eigen") and 
their full decorrelation. The basic advantages of the HAPCA method as compared to that of 

the PCA are the high decorrelation achieved for the transformed groups of CT images, very 
close to that of the “classic” PCA, but with much lower computational complexity, together 

with the ability for parallel processing for each group. In the paper are also given some results 
obtained after modeling of the proposed algorithm, applied on sequences of real CT images, 
which confirm the method ability to achieve high decorrelation. There are also discussed 

some of the basic applications of the HAPCA algorithm for compression of groups of СТ 
images, object segmentation, and reduction of the features’ space, when objects recognition is 
performed. 

 

Keywords: Principal Component Analysis, Hierarchical Adaptive PCA, sequences computer 

tomography images, "eigen" images, decorrelation of groups of images, features 
space reduction. 

 

1. Introduction  
 

The studies, based on the analysis of groups of medical images, which ensure the ability 
for early detection of various diseases, are of significant importance for the contemporary 

medical diagnostics. This scientific area, known as "diagnostic imaging", utilizes various 
technical tools to get medical images [1] of the kind: X-Ray (XR), Computer Tomography 
(CT), Single-Photon Emission Computed Tomography (SPECT), Positron Emission 

Tomography (PET), Nuclear Magnetic Resonance (NMR), Magnetic Resonance (MR), 
Magnetic Resonance Tomography (MRT), Ultrasound (US), etc. These images could be 

single photos of the examined human body parts, or sequences, which visualize the changes 
of the body in time, or in various spatial positions. Tipical examples are the sequences of CT 
images, obtained in result of scanning the selected part human body through small spatial 

steps. For one patient the number of these images is usually significant (could be over 200), 
each of high resolution. Depending on the sequence visualization on the screen, could be seen 

moving CT images, or 3D virtual reconstruction of the examined parts of the human body, 
which permits observation from different view points.  
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The methods for medical visual information processing depend on the application 

intended [1,2,3], such as for example: 

 Image transfer or archiving, for which are used various compression methods;  

 Enhancement of the visual quality (pre-processing);  

 Segmentation of the examined objects; 

 Extraction of features for objects recognition - methods for features minimization, 
which to ensure this reduced number of features to be sufficient for the achievement 

of the needed classification accuracy; 

 Objects tracking – metods for image sequences fusion, etc. 

 
The storage of huge volumes of visual medical information needs efficient algorithms 

for image compression. For still medical images are usually used software solutions, based on 

the 2D-DCT, 2D-Wavelet Decomposition for prediction or Embedded Zero-Tree/Block 
Coding of Wavelet Coeffients (EZW) [4,5,6], and also the file format DICOM (Digital 

Imaging and COmmunications in Medicine) [7]. For the compression of CT image sequences 
are used: the interframe decorrelation based on Hierarchical INTerpolation (HINT) [8,9], the 
Spatial Active Appearance Model (SAAM) for echo-cardiographic image sequence [10], the 

standards JPEG-LS and JPEG2000 with interframe motion compensated prediction [11,12] 
and the distributed representation of image sets based on Slepian-Wolf coding [13].  

          
One of the most efficient methods for decorrelation and compression of groups of images 

is based on the Principal Component Analysis (PCA), also known as of Karhunen-Loeve 

(KL) or Hotelling Transform, [14-23]. For its implementation the pixels with the same spatial 
position from each in a group of N images compose the corresponding N-dimensional vector. 
The basic difficulty of the PCA implementation is related to the large size of the covariance 

matrix. For the calculation of its eigenvectors is necessary to calculate the roots of a 
polynomial of Nth degree (characteristic equation) and to solve a linear system of N equations. 

For large values of N, the computational complexity of the algorithm is significantly 
increased. One of the possible approaches for reduction of the computational complexity of 
PCA for N-dimensional group of medical images could be based on the “Hierarchical 

Adaptive PCA” (HAPCA), offered in [24]. Unlike the famous Hierarchical PCA (HPCA) [17-
21], HAPCA is not iterative: it is implemented through dividing the image sequence into 

groups of length, defined by their correlation interval. Each group is divided into sub-groups 

of images, on which is applied the Adaptive PCA (APCA), of size 33 or 22. This transform 

is performed using equations, which are not based on iterative calculations, and as a result, 
they have lower computational complexity. To obtain high decorrelation for the whole group 

of medical images is necessary to use АPCA of size 33 or 22, which to be applied in 

several consecutive stages (hierarchical levels), with rearrangement of the obtained 
intermediate eigen images after each stage. In result is obtained a decorrelated group of eigen 

images. 
           

In this paper are presented some results of the HAPCA algorithm application for 
processing of groups of CT images, aimed at obtaining their high decorrelation and 
compression.  The paper is arranged as follows: detailed description of the HAPCA algorithm 

for processing of groups of CT images, transformation of CT images sub-groups through 
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АPCA with a matrix of 33 or 22 elements, evaluation of the computational complexity of 

the offered transform, results of the HAPCA application for compression of groups of CT 
images, other possible applications for video coding and object segmentation, and 

conclusions. 
 

2. Algorithm HAPCA for CT image sequences transform  
 

The algorithm HAPCA for CT image sequences transform comprises the following basic 

steps: 1) setting the length of each group of CT images through correlation analysis of the 
whole sequence; 2) dividing the sequence into groups, which comprise sub-groups of 3 or 2 
images each; 3) adding new interpolated images, in case that the last sub-group should be 

filled out; 4) defining the number of hierarchical transform levels depending on the 
decorrelation achieved; 5) execution of the HAPCA algorithm for each group, in result of 

which is achieved significant decorrelation of the transformed images.  
            

The next steps of the processing of the so obtained CT images depend on the HAPCA 

application needed. In case that it will be used for image group compression, follow the next 
operations: 1) cutting off the low-informative transformed images in each group; 2) block 

coding of each retained image by applying the selected 2D orthogonal transform, quantization 
of the obtained coefficients and entropy coding. For the decompression, same operations are 
executed in reverse order: entropy decoding, dequantization of the transform coefficients, 

block decoding of the retained images, adding the cut-off images in each group and applying 
the inverse HAPCA transform. As a result, the sequence of CT images is restored unchanged, 
or with minimum distortions, unnoticeable for the user. In case that lossless compression is 

needed, the steps, which execute cutting off for the low-informative transformed images and 
the coefficients quantization, are omitted. The choise of the compression metod (lossless or 

visually lossless) depends on the necessity to achieve: 1) full restoration of the sequence of 
CT images and relatively low compression, or 2) much higher compression at the expense of 
information loss, which is over the abilities of the human visual perception. 

 

2.1. Setting the number of CT images in each group and sub-group 
 

The basic quality of the HAPCA algorithm is that in result of its execution is achieved 
significant decorrelation for the processed group of initially highly correlated images. The 

main criterion used to set the number of images (N) in one group (i.e. - the length of the 
group), is the correlation interval in the processed CT sequence. In case, that the number N is 
set to be equal to the length of the correlation interval, the HAPCA efficiency is enhanced.    
          

For a sequence of Р images ][ uC  (u=1,2,..,P) the correlation interval could be defined on 

the basis of the normalized cross-correlation coefficient 1,u for the couple [C1] and [Cu] [25]: 

             














S

s
u

u

s

S

s
s

S

s
u

u

ss

u.

)cc()cc(

)cc()cc(

1

2

1

2

1

1

1
1

1

1 for u=1,2,..,P,     (1) 



Egyptian Computer Science Journal ,ECS ,Vol.  37 No. 3, May 2013       ISSN-1110-2586 
 
 

 

 
 

-4- 

where S is the number of pixels in each image ][ uC ; },{ 1

1 scEc   }{ u

su cEc   

])/1(}{[
1


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ss xSxEx ; ,1

sc u

sc  - the values of the pixels with same spatial position in the 

couple of images. 

   

In case that the function of the normalized cross-correlation (u), defined by Eq. (1), is 

approximated with the exponential model (u)=(1)exp(-u/N), the value of the correlation 
interval N (called also “interval of statistical influence”) is defined by the condition 

(u)=(1)exp(-1)=0.36 for u=N. Hence, when the (u) from Eq. (1) is calculated, N is defined 
by the value of u, for which: 

   Nu 36.0)(   for P.,..,u 1,2         (2) 

 After the value of N is defined, the sequence of Р images is divided into groups of N 
images and on each is executed the HAPCA algorithm. For this is necessary each Group Of 
Pictures (GOP) to be divided into sub-groups of Ns=3 or 2 images. However, N is not always 

divisible to 3 or 2 (i.e. the relations N = p13k or p22n are not satisfied). In the general case N = 
(p13k+m1) or (p22n+m2) for p1, k, m1, p2, n, m2 – positive integer numbers. Then the number of 

images in the sub-group Ns and the corresponding number of sub-groups (p1 or p2) are defined 
by the rules: 
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In case that 01m  and 02m  are simultaneously satisfied, the GOP should be expanded 

by adding new images. In this case the number of images Ne in the expanded GOPе is defined 
as follows:   
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The number mint of the images added to the GOP is defined by the relation: 

             .m, m-pmminNNm n

11
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On Figure (1) is given an example for the GOP expansion. The added new images mint=2 

are colored in green. They are defined through zero-order interpolation, by using the last (Nth) 
image in the group of length (p13k+m1).  

 

 

 

 

 

 



Egyptian Computer Science Journal ,ECS ,Vol.  37 No. 3, May 2013       ISSN-1110-2586 
 
 

 

 
 

-5- 

 

GOP1 ® N=p13
k
+m1

Set of CT images

-- -- N-1 2 N1 N-2 N 1--2

GOP2 ® N

N-1=p13
k

N+1 N+2NN

mint=2

GOP1(extended)® Ne=N+mint

m1=1

 
Figure (1): Determination of the GOP parameters for the algorithm HAPCA  

 

In Table 1 are given the values of Ne, p1, k, m1, p2, n, m2, mint, Ns and L, which define the 
structure of the HAPCA algorithm for group lengths N=4,5,...,16. For each value of N the 
number of hierarchical levels L of HAPCA is defined by evaluation of the acceptable 

decorrelation value, which should be achieved for the transformed GOP. The decorrelation 
could be evaluated through analysis of the elements ki,j of the covariance matrix [KC] of the 

vectors   t

sNsss e
CCCC ,,2,1 ,..,,


 for s=1,2,..,S. The components Cr,s of these vectors for 

r=1,2,..,Ne are defined by the pixels s with same spatial position in each image [Cr], which 
contains S pixels. 

 
                     Table 1. Parameners, which define the structure of the algorithm HAPCA  

  N     Ne p13k+m1 p22n+m2   p1   k  m1   p2   n  m2 mint Ns   L 

4  4      4       4   1   1   1   1   2   0   0  2   2 

5  6      5       5   1   1   2    1   2   1   1  3   2 

6  6      6       6   2   1   0    3   1   0   0  3   2 

7  8      7       7   2   1   1    3   1   1   1  2   2 

8  8      8       8   2   1   2   1   3   0   0  2   3 

9  9      9       9   1   2   0   1   3   1   0  3   2 

10 10     10      10   1   2   1   5   1   0   0  2   3 

11 12     11      11   1   2   2   1   3   3   1  3   3 

12 12     12      12   4   1   0   3   2   0   0  3   3 

13 15     13      13   4   1   1   3   2   1   2  3   3 

14 15     14      14   4   1   2   3   2   2   1  3   3 

15 15     15      15   5   1   0   3   2   3   0  3   3 

16 16     16      16   4   1   4   1   4   0   0  2   4 

The decorrelation of the transformed vectors )(lLs


 in the level l of HAPCA could be 

evaluated by using the relation CovR(l), calculated on the basis of their covariance matrix 
[KL(l)]: 
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Here ki,i(l)  are the elements in the main diagonal of the matrix [KL], and ki,j(l) for i  j - its 

non-diagonal elements. In case of full correlation we obtain CovR®, but to define the 

needed number of hierarchical levels L for HAPCA is enough to satisfy the relation: 

              ,)]([ 1  LlCovR          (7) 

where  is a pre-defined threshold with a small value, defined experimentally. In Table 1 are 

given the values of the levels L for each N, defined by Eq. (6) by using the mean covariance 

matrix ]K[ L
 for large number of examined СТ images. 

 
2.2. HAPCA Transform Algorithms for a Group of CT images 

 

On Figure (2) is given an example for the structure of the 2-level HAPCA algorithm, 
applied on the GOP, for N = 9. 
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GOP1 (N= 9) 

Set of 

Images

3 4 7 1 N6 8 952

APCA 

Level 1

311 122 133 1 N111 322222 233 333211

APCA-12 APCA-22 APCA-32

Reordering for level 2 in GOP1 

31 12 13 1 N11 3222 23 33

13 21 31 1 N11 2322 32 33

21

12

APCA-11 APCA-21 APCA-31

Reordering for level 1 in GOP1 

APCA 

Level 2

211 222 133 1 N111 322311 233 333122

4=222 7=1336=322 N1=111 5=3112=122 Eigen 

Images

3=211
18=233 9=333

GOP2 

1            

           

 

                       Figure (2): Algorithm of the 2-level HAPCA for a Group of 9 СТ images (N=9)  

            (each first APCA component is colored in yellow, the second in blue, and the third in green) 

 

As it is seen from the fugure, on each sub-group of 3 СТ images from the first 

hierarchical level of HAPCA is applied АPCA with a matrix of size 33. In result are 

obtained 3 eigen images, colored in yellow, blue and green correspondingly. After that, the 
eigen images are rearranged so that the first sub-group of 3 eigen images to comprise the first 

images from each group, the second group of 3 eigen images - the second images from each 
group, etc. For each GOP of 9 intermediate eigen images in the first hierarchical level is 

executed in similar way the next APCA, (with a 33 matrix on each sub-group of 3 eigen 

values).  In result, in the second hierarchical level are obtained 3 new eigen images (i.e. the 
eigen images of the group of 3 intermediate eigen images), colored in yellow, blue, and green 

correspondingly. Then the eigen images are rearranged again so, that the first group of 3 eigen 
images to contain the first images from each group before the rearrangement; the second 

group of 3 eigen images - the second image before the rearrangement, etc. At the end of the 
processing is obtained a decorrelated group of eigen images, from which through inverse 
НАPCA could be restored the original group. 
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On Figure (3) is shown an example for the structure of a 3-level HAPCA algorithm, 

applied on a GOP of 8 images (N=8). On each sub-group of 2 СТ images from the first 

hierarchical level of HAPCA is executed АPCA with a matrix of size 22. In result are 

obtained 2 eigen images, colored in yellow and blue correspondingly.  

GOP1 (N=8) 

Input 

Images

3 4 7 10 N1 6 8 952

APCA 

Level 1

122 222 142 212 N112 232132 242 112212

APCA-12 APCA-22 APCA-32

Reordering for level 2 in GOP1 

121 221 141 211 N111 231131 241 111

211 221 231 121 N111 141131 241 111

211

121

APCA-11 APCA-21 APCA-41

Reordering for level 1 in GOP1 

APCA 

Level 2

212 222 232 122 N112 142132 242 112122

4=133 7=2436=233 N1=113 5=2232=213

Eigen  

Images

3=123 10=2138=143 9=113

GOP2 

APCA-31 APCA-11

Reordering for L 1 in GOP2 

APCA-42 APCA-12

123 223 143 213 N113 233133 243 113213

APCA-13 APCA-23 APCA-33

APCA 

Level 3

APCA-43 APCA-13

Reordering for L 2 in GOP2 

Reordering for level 3 in GOP1 Reordering for L 3 in GOP2 

 

Figure (3): Algorithm for 3-level HAPCA applied on a Group of 8 СТ Images (N=8)  
(each first APCA component is colored in yellow, and each second – in blue) 

 
After execution of all hierarchical HAPCA levels, the obtained intermediate images are 

rearranged so that these with similar correlation to be in same sub-group. The 3-level HAPCA 
transform is also reversible. Due to the smaller size of the transform matrix, to achieve the 
needed decorrelation should be used 3 hierarchical levels (instead of 2 for the previous case). 
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2.3. Sub-group Transform through АPCA with a 33 Matrix  

For the calculation of eigen images through Adaptive PCA with a 33 matrix for one 
GOP sub-group, is applied the approach given in [26] for 3-component vectors. From each 

sub-group of 3 СТ images of S pixels each, shown on Figure (4), are calculated the vectors 

  t

ssss CCCC 321 ,,


 for s=1,2,..,S (on the figure are shown the vectors for the first 4 pixels 

only:   ,,, 3121111

tCCCC 


   ,,, 3222122

tCCCC 


   ,,, 3323133

tCCCC 


   tCCCC 3424144 ,,


). Each 

vector is transformed into vectors   t

ssss LLLL 321 ,,


 for s=1,2,..,S through АPCA with a 

matrix [], of size 33.  
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1L


2L
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3L
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4L
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Figure (4): APCA transform for a sub-group of 3 images  

 

The Forward Аdaptive PCA for the vectors   t

ssss CCCC 321 ,,


, from which are 

obtained vectors the   t

ssss LLLL 321 ,,


, is: 
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Here ),( 1s1 CEC  ),C(EC s2 2  ).C(EC s3 3  The elements im of  the matrix [] are: 

     mmmmmmmmm P/D  ;P/B  ;P/A  321 ΦΦΦ   for  m = 1,2,3, where:    (9) 
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The equations (9)-(17), which represent the calculation of the matrix [], are given in 

detail in [26]. The Inverse Аdaptive PCA for the vectors sL


, from which are obtained vectors 
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, is: 
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 for s = 1, 2,…, S.                               (18) 

For the restoration of vectors t

ssss CCCC ],,[ 321


 through inverse АPCA are needed not 

only the vectors t

ssss LLLL ],,[ 321


, but also the elements ij of the matrix   , and the 

values of 321 ,, CCC  as well. The total number of needed elements could be reduced 

representing the matrix    as the product of matrices )(1Φ ,  )( 2Φ ,  )(3Φ , and the 

rotation around the coordinate axes for each transformed vector in Euler angles ,   and  

correspondingly:  

         ),,()()()(  ΦΦΦΦ

ΦΦΦ

ΦΦΦ

ΦΦΦ

Φ 321

332313

322212

312111



















 ,                       (19) 

where  

    ;

cossin

sincos

)( ;cossin

sincos

)(















 

















 













0

010

0

Φ

100

0

0

Φ 21  














 



100

0

0

Φ3 



 cossin

sincos

)( .  (20) 

In this case the elements of the matrix Φ][  are represented by the relations: 

;sinsincoscoscos  11Φ  ;)cossinsincos(cos  21Φ ;sincos 31Φ   

;sincoscoscossin  12Φ  ;coscossincossin  22Φ  ;sinsin 32Φ   

;cossin 13Φ                              ;sinsin 23Φ                                .cos 33Φ          (21)  

The matrix of the inverse АKLT is defined by the relation: 

     )()()(  


123

1
ΦΦΦΦ .               (22) 

Then, for the calculation of the elements of the inverse matrix  is enough to know the 

values of the  rotation angles ,   and , defined by the relations: 

   ;arcsinα 2

3332 Φ1Φ    ;arccos 33Φ     .arccos 2

3313 Φ1Φ                  (23) 
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In result, the number of needed values for the calculation of the matrix   1
  is reduced 

from 9 down to 3, i.e. 3 times reduction. The elements 
sss LLL 321 ,,  for s=1, 2,...,S comprise the 

pixels of the first, second and third eigen image in the sub-group of CT images. 

2.4. Sub-group Transform through АPCA with a 22 Matrix 

For the calculation of eigen images through АPCA with a 22 matrix for one GOP sub-
group is used the approach for the transformation of 2-component vectors through PCA, given 

in detail in [27].  
 

                
[C2]

C11 C21

C12 C22
C13 C23

C24C14

1C


2C


3C


4C


[C1]

                 

  

[L2]

L11 L21

L12 L22
L13 L23

L24L14

1L


2L


3L


4L


[L1]

 

                   Figure (5): APCA transform for sub-group of 2 images from the GOP  

 

From each sub-group of 2 СТ images of S pixels each, shown on Figure (5), are 

calculated the vectors   t

sss CCC 21 ,


 for s=1,2,..,S (on the figure are shown the vectors for 

the first 4 pixels only:   ,, 21111

tCCC 


   ,, 22122

tCCC 


   tCCC 23133 ,


,   tCCC 24144 ,


). 

Each vector   t

sss CCC 21 ,


is then transformed into vectors   t

sss LLL 21 ,


 through forward 

АPCA, using the matrix [] of size 22: 

           



























)(

)(

22

11

2212

2111

2

1

CC

CC

L

L

s

s

s

s  for s = 1, 2,..., S.                        (24) 

Here ),( 1s1 CEC  ).( 2s2 CEC   The elements ij of the matrix [] are [27]:  

           ,
)( 








2
11

2
Φ   

)( 






221

2
Φ ,   (25)  

          ,
)( 








2
12

2
Φ     ,

)( 






2
22

2
Φ    (26) 

where ,kk 21  3k2  and 222   .  

            ,CCEk  ,CCEk ss

2

2

2

22

2

1

2

11 )()()()(  ).)(().( 21213 CCCCEk ss     (27) 

To satisfy the requirement 02 2  )(   in Eqs. (26), it’s necessary to have 03 k  

(i.e. the mutual covariation between the vectors sC


 has to be positive or negative). If the 

Forward  
  APCA 

Inverse  
 APCA 
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opposite is true (for 03 k ) the PCA 22 is not applied because the vectors 
sC


 are 

decorrelated. 

The inverse APCA of the vectors sL


 transforms them into vectors  t

sss CCC 21 ,


: 

             





























2

1

2

1

2221

1211

2

1

C

C

L

L

C

C

s

s

s

s  for s = 1, 2,…, S.     (28) 

The elements ij of  Φ  are functions of the angle  to which the rotation of the 

coordinate system )L,L( 21  is done in relation to the initial system ),( 21 CC  as a result of the 

APCA. If both coordinate systems ),( 21 CC  and ),( 21 LL  are selected to be right-oriented, the 

matrix )][Φ (  used for rotation to angle  in the counter-clockwise direction, is given by the 

expression:  

               





























cossin

sincos

)()(

)()(
)(

2212

2111 ΦΦ
Φ ,                                                     (29) 

where  .arctg
)(

)(
arctg 






























11

21

Φ

Φ
  

The elements of the rotation matrix ][Φ )θ(  are: 

)(
arctgcoscos


























2
][ , .

)(
arctgsinsin
























2
][    (30) 

Then from Eqs. (29) - (30) follows that the rotation matrix for 22 is: 

             








































1

1

2
Φ

















)(cossin

sincos
)( .     (31) 

From Eqs. (24)-(27) and (28)-(31) follows that for the executation of one transform of the 

forward/inverse APCA, 3 parameters only should be known: ,  ,1C  and 2C . 

 

3. Evaluaton of the Computational Complexity of HAPCA  
 

The computational complesity (CC) of the HAPCA algorithm is evaluated for N=9 and 

L=2 (in this case the transform matrix ][  used for the processing of each sub-group, is of 

size 33). In this work it is compared with the CC for the PCA algorithm when N=9 and the 

transform matrix ][  is of size 99. As a basis for the evaluation is used the total number of 

operations O (additions and multiplications), needed for the calculation of the following 
elements of both algorithms: 
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 The covariance matrices: in total, 6 matrices for the first algorithm, each of size 33, 

and one matrix of size 99 – for the second algorithm;    

 The eigen values and the eigen vectors of these matrices; 

 The eigen images in each GOP, obtained as a result of the algorithm execution. 

From the analysis, given in [26] for the СС of APCA with a 33 matrix and of PCA with a 

NN matrix it follows that for HAPCA with L=2 and 33 matriсеs and PCA with a 99 

matrix, we have: 
         - The total number of operations needed to calculate all 6 covariance matrices of size 

33 - for HAPCA, and one matrix of size 99 – for PCA, are corespondingly:  

  .576)]2(2)1()[1(3)(
3




NNNNNNO
Nkov                                         (32) 

  .4230)]2(2)1()[1()2/1()(
9




NNNNNNO
Nkov                              (33) 

- The total number of operations needed to calculate the eigen values of same matrices 
for HAPCA in correspondence with Eqs. (14)-(17), and for PCA - when the QR 

decomposition and the Householder transfomation of (N-1) steps are used [15], we have:  

  .282)(
3


Nval NO                                                                                               (34) 

  .1124)7
6

17

3

4
)(1()( 2

9



NNNNO

Nval                                                    (35) 

         - The total number of operations needed to calculate the eigen vectors of same matrices 

for 2-level HAPCA and for PCA - by using an iterative Gauss-Seidel method [25] with 4 
iterations, we have: 

          .)N(O
Nvec 275

3



                                                                                          (36) 

          .1-)N(4NN)N(O
Nvec 6633]5[2

9



                                                           (37) 

         - The total number of operations needed to calculate a group of 9 eigen images, 
comprising S pixels each, through the forward 2-level HAPCA and the PCA with zero mean 
vectors, is correspondingly: 

           .90)12(6)(
3

SNSNNO
NHAPCA 


                                                                  (38) 

           .153)12()(
9

SNSNNO
NPCA 


                                                                    (39) 

The total number of operations O for 2-level HAPCA and PCA is: 

  
,SS)(O)(O)(O)(O)(O HAPCAvecvalkov 90113390275282576]3333[31               (40) 

  
SS)(O)(O)(O)(O)(O PCAvecvalkov 15311987153663311244230]9999[92    (41) 

The reduction of the total number of operations needed for the 2-levels HAPCA, 

compared to that of the PCA, could be evaluated by using the coefficient : 
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     .
S

S

)(O

)(O
)S(

901133

15311987

3

9

1

2




                                                                                (42) 

From Eq. (42) follows that for S=100, ;.)( 692100   for S=1000, ;.)( 8111000   and 

for S = ,  ..)( 71®  Hence, for each value of S the total number of operations O1(S) is at 

least 1.7 times smaller than O2(S) (or in average, about 2 times). In respect to the value of  
we get similar result in the case, when the HAPCA is for N=8 and L=3. 

 

4. Experimental Results of the HAPCA Algorithm Application in 
Compression  of CT Images  

 

For the experiments were used image sets of the image database of the Technical 

Universuty of Sofia. The algorithm implementation was in Visual C. The time needed for the 
HAPCA execution is up to several milliseconds. A part of the experimental results is given 
below. The algorithm of the 2-level HAKLT, was applied on a sequence of P=64 CT images 

of size 512×512 pixels (S=218), 8 bpp. In result of the correlation analysis this sequence was 
divided into 7 groups (Set 1,..,Set 7), each comprising N=9 CT images. On Figure (6) is shown 

one of the groups (Set 3), which comprises images: Image 1,..,Image 9. 
  

 
 Image 1 

 
Image 2 

 
                Image 3 

 
Image 4 

 
Image 5 

 
Image 6 
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Image 7 

 

Image 8 

 
 Image 9 

Figure (6): A group of N=9 consecutive CT images from Set 3 

          

 
Eigen Image 1 

 
Eigen Image 2 

 
Eigen Image 3 

 
Eigen Image 4 

 
Eigen Image 5 

 
Eigen Image 6 

 
Eigen Image 7 

 
Eigen Image 8 

 
Eigen Image 9 

               Figure (7): Еigen images, obtained from images in Set 3 as a result of the 2-level HAPCA 

 

On Figure (7) are shown the eigen images, obtained after the execution of 2-levels 
HAPCA on the images from Set 3. As it could be noticed, the main part of the power of all 9 

images is concentrated in the first eigen image, and the power of each consecutive eigen 
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image is quickly getting lower. This conclusion is confirmed also by the data shown in Table 

2, which presents the power distribution for the pixels of the eigen images from Set 3 after the 
first and the second HAPCA levels, before and after their rearrangement in correspondence 
with the algorithm from Figure (2).  

 
The power distribution of all eigen images in Set 3 before and after rearrangement and 

the relative mean power distribution are given in Table 2. On the basis of the data given in 
this table, on Figures (8-10) are shown the corresponding graphics for the power distribution 
of the obtained 9 eihgen images. 

 
 

              Table 2. Power distribution of all eigen images in Set 3 before and after each level 

                            and the relative mean power distribution. 

Name 

Level 1 

(not arranged) 

Level 1 
(arranged) 

Level 2 

(not arranged) 

Level 2 
(arranged) 

Relative 
mean 

  Eigen Im. 1 18170 18170 53041 53041 220 

Eigen Im. 2 715 18056 686 1100 5 

Eigen Im. 3 341 18029 316 686 3 

Eigen Im. 4 18056 715 1100 710 3 

Eigen Im. 5 748 748 710 316 1 

Eigen Im. 6 389 694 305 305 1 

Eigen Im. 7 18029 341 523 523 2 

Eigen Im. 8 694 389 326 326 1 

Eigen Im. 9 394 394 242 242 1 
      

  
                                         a                                                                        b 

Figure (8): Power distibution for Set 3, level 1: a) not arranged; b) arranged. 
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          a                                b 

      

Fig. 9. Power distibution for Set 3, level 2: a - not arranged, b - arranged. 

 

   

Figure (10) Relative mean power distribution for Set 3, level 2 (arranged) 

 
In Table 3 are given the mean and the relative mean power distribution for the pixels in 

all 9 eigen images from Set 1,...,Set 7. On Figure (11) are shown the corresponding graphics of 
these distributions. From the graphic representation on Figure (11,b) it follows, that the mean 

power of the first eigen image for all examined sets is 220 times larger than that of the half of 
the next 8 eigen images. The data in the last column of Table 3 show that in the first 3 eigen 
images is concentrated 95.7 % of the global mean power for all 9 images in the GОР.  

 
The pixels of the еigen images are obtained through the forward 2-level HAPCA followed 

by Arithmetic Coding (AC). After inverse HAPCA and AC decoding, the quality of the 

restored images of the processed GOP, evaluated as Peak Signal-to-Noise Ratio (PSNR), is  

52 dB. This is also confirmed by the results shown on Figure (12), obtained for the еigen 
images in Set 1,.., Set 7. Hence, after the forward HAPCA-AC on the СТ images in one GOP, 
followed by Inverse HAPCA-AC the original sequence could be restored with retained image 

quality. 
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     Table 3. Power Distribution, Mean Power Distribution, Relative Mean Power Distribution and  

                   Relative Mean %  of the Power Distribution for all eigen images in Set 1,..,Set 7. 

Image   Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Mean  
Relative 
mean 

Relative 

mean % 

Eig. 1   49992 49749 53041 53547 53774 43272 37701 48725 259.6 91.4 

Eig. 2       949 811 1100 875 2331 1770 1094 1276 6.8 93.8 

Eig. 3       683 2325 686 1062 625 834 1144 1051 5.6 95.7 

Eig. 4       808 710 710 512 460 811 950 709 3.8 97.1 

Eig. 5       522 566 316 425 300 442 364 419 2.2 97.8 

Eig. 6       350 529 305 306 317 402 435 378 2.0 98.6 

Eig. 7       206 222 523 317 554 306 430 365 1.9 99.2 

Eig. 8       172 198 326 261 312 251 218 248 1.3 99.6 

Eig. 9       130 171 242 173 254 167 177 188 1.0 100.0 

    

   
                  a                   b 

     Figure (11) a Mean Power Distribution;  b) Relative Mean Power Distribution for all eigen images  

 

    
                     a                 b 

           Figure (12): Comparison of the quality (resp. PSNR) and of the Compression Ratio for sequences  

                      of CT images in Set 1,.., Set 7 through 2-level HAPCA-AC and JPEG (for 100%  quality) 

 

This result shows that the method could achieve higher compression if the application 

permits to use restored images of lower quality (for example, images with PSNR  32 are 

visually lossless also, and in this case the compression ratio will be much higher).  
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5. HAPCA Applications for Video Coding and Objects Segmentation 
 

Here are discussed some application possibilities for НАРСА, aimed at the compression 
of video sequences and at the segmentation of objects or regions of interest in static color 

images. The offered algorithms could be also used for the processing of various medical 
images (static or dynamic).  
 

5.1. HAPCA Application for Video Coding 
 

One of the applications of the НАРСА could besuccessfully aimed at the enhancement of 
the compression efficiency of videosequences, represented in one of the well-known 

standards MPEG-1/2/4 [9,28]. For the example, shown on Figure (13), the algorithm НАРСА 
could be used to transform the 3 P-frames in the GOP, comprising N=12 TV frames in total. 

                           

GOPout

I B BB B B B B BPP P

P1 P2 P3

GOPin (N=12)

Motion compensated 

predicted frames

Adaptive PCA 

with matrix 3x3 

L1 L2 L3I B B BB B B B B

Extraction of 

predicted frames

 

                       Figure (13): НАРСА compression for a video sequence, coded in one of 

                             the standard formats MPEG-1/2/4, for a GOP of N=12 TV frames 

 
To achieve higher decorrrelation for the processed 3 Р-frames, after their APCA 

transform is necessary to change the way for the calculation of vectors    t

ssss CCCC 321 ,,


 

for s=1,2,..,S. Unlike the case, shown on Figure (4) for static images, the components of 

vectors sC


 here contain the pixels with same spatial position in the P frames, only for the 

case, when they are placed in static regions (i.e., without movement). For the example on 
Figure (14) in such region are placed only pixels, which comprise the vector 

  tCCCC 3121111 ,,


 (for s=1). 
 

                                  

[P1] [P2] [P3]

C11 C21 C31

1
C



3
C



4
C



Vector without

Motion 

Compensation 

Vector with

Motion 

Compensation 

Motion Vector 

C12

C13
C14

C22

C24

C23

C34

2
C


C32

C33

Moving 

Object 

 
Figure (14): APCA transform for 3 motion-compensated P-images from one GOP 
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          In regions with movement, colored in green on Figure (14), the pixels, which comprise 

the components of the corresponding vectors   t

ssss CCCC 321 ,,


 for s=2,3,4 should be 

moved away in relation to their positions from the regions without movement. The 

displacement ),( ji   in the region with movement for every pixel (i,j) from the frame (k+1) 

in relation to the foregoing frame  k in the group, defines the corresponding movement vector, 
colored in red on Figure (14). The movement vectors permit to define the positions of pixels 
in the regions with movement in the second and third P-frames, as shown on Figure (14). The 

so obtained vectors sC


(s=2,3,4)  are with movement compensation. The APCA transform for 

these vectors enhances the concentration of their power mainly in the first component of the 

calculated vectors sL


, which corresponds to the first eigen image. In this way it is possible to 

retain and to transfer to the decoding side the first eigen image only, together with the motion 
vectors for the pixels from the regions with movement of the remaining 2 eigen images (for 

fixed TV camera the regions with movement in every frame correspond to relatively small 
part of the global number of pixels). On the basis of this approach, the Р-frames are restored 

with satisfactory quality through inverse APCA, and together with this the compression ratio 
for the whole GOP is increased.  
 

5.2. The application of HAPCA algorithm for object segmentation  

 

One of the approaches for objects segmentation in the image is based on the use of the 
color information. As it is known the color of every pixel in the image is represented by the 

vector   t

ssss BGRC ,,


 for s=1,2,..,S, where Rs,Gs,Bs are the values of the red, green and 

blue components for the pixel s, and S - number of pixels. In case that the colors of the pixels 

on the object surface are close, their corresponding vectors sC


 constitute a cluster in the color 

space R,G,B. Then, the object color segmentation in the image could be performed, using: 
linear discriminant functions, defined through the famous methods Linear Discriminant 
Analysis (LDA), Fisher's Linear Discriminant (FLD), Support Vector Machine (SVM); 

Principal Colors with fuzzy clustering - Fuzzy Principal Component Analysis (FPCA), etc. 
[29-31]. In many cases however, the colors of the pixels, belonging to same object, are not 

close, and their corresponding color vectors do not constitute convex multitudes in the color 
space. Then, in order to achieve linear separability of the classes is applied preliminary 
expansion of the vector space, through non-linear transform using a "kernel" function of the 

kind: polynomial, exponential, etc. In the general case, the color space is significantly 
expanded in result of the non-linear transform, and in order to reduce the needed calculations, 

the color vectors components, which carry relatively small part of the information, should be 
reduced, retaining their principal components only. Such reduction could be achieved using 
the Kernel Principal Component Analysis (KPCA) [32]. In this case, however, is necessary to 

apply various iterative methods for the calculation of the eigen values and vectors of the 
covariance matrix of large size, defined using the vectors in the color space, expanded 

through kernel-function [33-36]. One more alternative is the introduction of the corresponding 
weight coefficients for the eigen vectors components in the expanded color space, defined 
using Weighted KPCA (WKPCA) [37]. The computational complexity of КPCA and 

WKPCA is high in these both cases. 
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Here is offered one new approach for objects segmentation in the color space, expanded 
through KPCA, which permits significant reduction of the computational complexity. For 
this, the number of vectors components in the expanded space is reduced by using HAPCA 
instead of the PCA. To illustrate this new approach, here is given one algorithm for objects 

color segmentation in the expanded 6-dimensional space, using a polynomial kernel-function, 
a space reduction through 2-level HAPCA, and SVM classifier for pixels indexation in every 

segmented object. 

The general algorithm for objects segmentation in the extended color space, based on the 
Kernel HAPCA (KHAPCA) and SVM classifier of the reduced vectors, is given in Figure 

(15). In the block for preprocessing, each color vector   t

ssss BGRC ,,


 is transformed into 

the corresponding expanded vector sP


. If the chosen kernel-function is polynomial, and the 3-

dimensional color space is transformed into a 6-dimensional, then the components pis of the 

vectors sP


 could be defined as follows:  

      t

ssssss

t

ssssssssss P,P,P,P,P,PBR,GB,GR,B,G,RP 654321


 for s=1,2,..,S.        

Preprocessing 

with polinomial

kernel

 function

2-level

HAPCA

SVM

classifier

Input 

R,G,B image
ObjectCs Ps Es

 

Figure (15): Block diagram of the algorithm for objects segmentation in the expanded color space     

 

In order to put all components pis in the range 0  255, these with a consecutive number 

i=4,5,6 are normalized by calculating the root of the products ,GR ss ,GB ss ssBR , followed by 

a quantization of their values in the range 0  255. The vectors sP


 are then transformed using 

the 2-level HAPCA, whose algorithm is shown in Fig. 16. As a result of the transform are 

obtained the 2-component vectors 
t

sss ,EEE ][ 21


, which are used to substitute the input 6-

components vectors   t

sssssss PPPPPPP 654321 ,,,,,


. In this way the performance of the SVM 

classifier is also simplified, because it have to process the vectors sE


 in the 2-dimensional, 

instead of the 6-dimensional space. At its output are separated (indexed) all pixels in the 

image, whose corresponding vectors sE


 are in the area of the cluster, belonging to the object. 

With this the color segmentation is finished. In accordance with the algorithm shown in 

Figure (16), for the 2-level HAPCA, the 6 components of each input vector 

  t

sssssss PPPPPPP 654321 ,,,,,


 are divided into 2 sub-groups, which contain the 3-

components vectors   t

ssss PPPP 1312111 ,,


 and   t

ssss PPPP 2322212 ,,


 for s=1,2,..,S.   

In the first level of HAPCA on each group of vectors   t

skskskks PPPP 321 ,,


 for k=1,2 is 

performed APCA with a transform matrix of size 3×3. The so obtained vectors from each 
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group comprise 3 “eigen” images, shown in Figure (16) with different colors (yellow, blue 

and white). These images are rearranged as shown in the figure, and after that are separated 
again, this time into 3 groups, of 2 images each. The vectors, obtained from pixels with same 
coordinates in the images from each group, are of 2 components.  

In the second level of HAPCA for each group of 2-dimensional vectors is performed 
APCA with a transform matrix of size 2×2. The so obtained vectors from each group build the 

2 eigen images, shown in Fig. 16 in yellow and white color correspondingly. These images 
are rearranged again, as shown in the figure. As a result, are obtained the 6 eigen images Е1-
Е6, from which are retained the first two (Е1 and Е2) only, which carry the main information, 

needed for the color objects segmentation. From the algorithm, shown in Figure (16) follows, 
that to define Е1 and Е2 is not necessary to calculate the eigen images in the HAPCA first and 

second levels, colored in white. As a result, the computational complexity of HAPCA is 
smaller than that of PCA, for the case, when it is used to transform directly the 6-dimensional 

vectors sP


. In this way, the general computational complexity of HAPCA and SVM, needed 

for the processing of the vectors sP


 is lower than that, needed for the processing of same 

vectors with PCA and SVM. From the pixels with same coordinates in the images Е1 and Е2 

are obtained the vectors 
t

sss ,EEE ][ 21


, which are then used by the SVM classifier.  

 

Input 

Image P

P3 P4P1 P6P5P2

HAPCA 

Level 1

122 222112 232132212

APCA-12 APCA-22

Reordering for level 2 

311 121111 321221

211 221111 321311

211
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APCA-11 APCA-21

Reordering for level 1  
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Level 2
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212

E4=
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E1=
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132
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APCA-32

 
Figute (16): 2-level HAPCA algorithm, used for the transformation of vectors sP


 

(each first APCA component is colored in yellow, each second - in blue, and each third in the first level 

only - in white; the reduced components are E3  E6)   
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8. Conclusions 
 
The basic qualities of the offered HAPCA for processing a group of СТ images are: 
1. The lower computational complexity than that of the PCA for the whole GОР, due to the 

lower complexity of APCA compared to the case, for which for the calculation of the PCA 
matrix are used numerical methods [14,15]; 

2. The ability to implement еfficient lossy соmpression for a GОР with retained visual quality 
of the restored images and for lossless compression also; 

3. The ability for reduction of the features space in the regions of interest for a group of 

medical images, which comprise objects of different classes; 
4. The ability for parallel processing of each sub-group of СТ images in one GОР; 

5. There is also a possibility for further development of the HAPCA algorithms, through: use 
of Integer PCA for lossless coding of medical images by analogy approach with [22,23]; 
compression of video sequences from stationary TV camera; segmentation of regions of 

interest in sequences of medical, multispectral and multi-view images; object detection in 
extended color space; image fusion; face recognition, etc. 
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