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Abstract 
 

This paper reports on an experimental study on mathematical modelling (MM) with 
subjects postgraduate students of the Faculty of Computer and Information Sciences of the 
Ain Shams University, Cairo, Egypt. The Voskoglou’s fuzzy methods for the process of 

modelling developed in earlier papers were applied in this experiment. The results obtained 
are compared with corresponding results of  students’ of the Graduate Technological 

Educational Institute of Patras, Greece reported in earlier works of Vokoglou and some new 
useful conclusions are stated. 
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1. Introduction 
 

The systems’ modelling is a basic principle in engineering, in natural and in social 

sciences. When handling a problem concerning a system’s operation (e.g. maximizing the 
productivity of an organization, minimizing the functional costs of a company, etc) a model is 

required to describe and represent the system’s multiple views. The model is a simplified 
representation of the basic characteristics of the real system including only its entities and 
features under concern. In this sense, no model of a complex system could include all features 

and/or all entities belonging to the system. In fact, in this way the model’s structure could 
become very complicated and therefore its use in practice could be very difficult and 

sometimes impossible. Therefore the construction of the model usually involves a deep 
abstracting process on identifying the system’s dominant variables and the relationships 
governing them. 

We recall that the main stages of the modelling process involve the analysis of the given 
problem, the construction of the model, the solution, the validation (control) of the model and 

the implementation of the final results to the real system. We recall also that the most 
important type of model in use is the mathematical model, where all variables are 
quantifiable. In this case the construction of the model is usually referred as mathematization. 

For more details see, for example, section 1 of [1].  
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A system can be viewed as a bounded transformation, i.e. as a process or a collection of 

processes that transforms inputs into outputs with the very broad meaning of the concept. For 
example, an output of a passengers’ bus is the movement of people from departure to 
destination. Many of these processes are frequently characterized by a degree of vagueness 

and/or uncertainty. For example, during the processes of learning, of reasoning, of problem-
solving, of modelling, etc, the human cognition utilizes in general concepts that are inherently 

graded and therefore fuzzy. On the other hand, from the teacher’s point of view there usually 
exists an uncertainty about the degree of students’ success in each of the stages of the 
corresponding didactic situation.   

All the above gave to Prof. Voskoglou, the first of the authors of this paper, the 
impulsion to develop a fuzzy model for a more effective description of the modelling process 

(see [1] and [2]). In [2] Voskoglou used the total possibilistic uncertainty as a measure of a 
student group’s modelling skills, while in [1] he used the centroid defuzzificaion technique for 
the same purpose. Also Voskoglou introduced in [3] techniques for the students’ individual 

assessment Further, Voskoglou and Buckley developed in [4] a detailed account of 
computational thinking, which is a new problem solving method named for its extensive use 

of computer science techniques. The results of the classroom experiments presented in [1] and 
[4] suggest that the use of computers as a tool for problem solving enhances the students’ 
abilities in solving real world problems involving mathematical modelling.  

The two authors of the present paper discussed in detail the above experimental results 
and they decided to investigate further the situation together. This paper reports on a recent 

experimental study on this matter with subjects postgraduate students of the Faculty of 
Computer and Information Sciences of the Ain Shams University, Cairo, Egypt. The 
Voskoglou’s fuzzy methods mentioned above were also applied in this case. The results 

obtained are compared with the corresponding results of students’ of the Graduate 
Technological Educational Institute of Patras, Greece reported in [1] and [2] and some new 

useful conclusions are stated. 

For general facts on fuzzy sets and on uncertainty theory we refer freely to the book [5]. 
 

2. The Fuzzy Model 

The main ideas of Voskoglou’s fuzzy model for the process of mathematical modelling 

(MM) developed in [1] and [2] are the following: 

Let us consider a group of n students, n 2, during the MM process. We denote by Ai , 

i=1,2,3 , the stages of analysis/mathematization, solution and validation/implementation 
respectively, and by a, b, c, d, and e the linguistic labels of negligible, low, intermediate, high 
and complete success respectively at each of the Ai’s. The consideration of 

analysis/mathematization and of validation/implementation as join stages was done in order to 
make the model technically simpler.        

Set U={a, d, c, d, e} and denote by nia, nib, nic, nid and nie the numbers of students that 
have achieved negligible, low, high and complete success at state Ai respectively, i=1,2,3, In 
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order to represent the Ai’s as fuzzy subsets of U. we define the membership function 
iAm  for 

all x in U by  

4
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                    Then we can write Ai = {(x, mAi(x)):  xU}, i=1, 2, 3. 

A student’s profile during the MM process is defined to be an ordered triple of the form 

s = (x, y, z), where x, y and z are elements of U that denote the student’s success at the stages 
A1, A2 and A3 respectively. A profile s is said to be well ordered if x corresponds to a degree 
of success equal or greater than y and y corresponds to a degree of success equal or greater 

than z. The membership degree 
sm of each profile s is defined to be the product 

sm = 

m
1A
(x).m

2A
(y).m

3A
(z) if s is well ordered, and 0 otherwise. In fact, if for example the profile 

(b, a, c) possessed a nonzero membership degree, how it could be possible for a modeller, 

who has failed in solving the model, to perform satisfactorily in validating/implementing it?  

The rest of the model involves the calculation of the possibilities of all profiles by the 

well known formula rs=
}max{ s

s

m

m
,   where max{ms} denotes the maximal value of ms , for all 

s in U3. In other words rs is the “relative membership degree” of s with respect to the 
membership degrees of the other profiles.   

In this way we obtain a qualitative view of the students’ performance during the 

learning process of a subject matter in the classroom. This is reinforced by Shackle [6] (and 
many others after him), who argues that human cognition can be formalized more adequately 

by possibility rather, than by probability theory. We recall the probability for fuzzy data is 

defined by ps  =  

3

s

s

s U

m

m



, which gives that ps  rs for all s in U3.  This is compatible to the 

common logic, since whatever it is probable it is also possible, but whatever is possible need 
not be very probable.               

A basic principle of the information theory states that the amount of information 
obtained by an action can be measured by the reduction of uncertainty that results from the 

action. Thus a measure of a student group’s uncertainty can be also adopted as a measure of 
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its performance. For example, the lower is a group’s uncertainty after the MM process, which 

indicates a greater reduction of it during this process, the better is the group’s performance.  

In [2] Voskoglou used a student group’s total possibilistic uncertainty (i.e. the sum of 
strife and non specificity) as a measure of its performance during the MM process. Other 

measures of uncertainty that are commonly used in fuzzy logic involve the total probabilistic 
uncertainty, i.e. the classical Shannon’s entropy expressed in terms of the Dempster-Shafer 

mathematical theory of evidence for use in a fuzzy environment (e.g. see [7]) and the 

ambiguity which is a generalization of the Shannon’s entropy in possibility theory that 
captures both strife and non specificity (e.g. see [8]). 

Another popular technique of producing a quantifiable result from fuzzy data 
(defuzzification) is the centroid method, in which the coordinates (xc, yc) of the centre of 

gravity of the graph of the membership function involved provide an alternative measure of a 
group’s performance (e.g. see [9], [10], etc). We recall that in order to apply the centroid 
defuzzification technique one must correspond to each x of U an interval of values from a 

prefixed numerical distrbution. In our case (MM process) we characterize a student’s 
performance as very low (a) if x [0, 1), as low (b) if  

x[1, 2), as intermediate (c) if x[2, 3), as high (d) if x[3, 4) and as very high (e) if  

x[4,5] respectively1.  Then the graph of the corresponding membership function ( )
iAy m x  

is a bar graph consisting of five rectangles (e.g. see Figure 1 of [1]), whose sides on the x axis 

have length 1. The centroid method enables one to compare the student groups’ performance 
at each stage of the MM process. In fact, according to the criterion developed in section 3 of 
[1], the greater the value of xc , the better the group’s performance at the corresponding stage. 

We recall that the value of xc is calculated by the formula 1 2 3 4 5

1 2 3 4 5

3 5 7 91
( )

2
c

y y y y y
x

y y y y y

   


   
, 

where ( )
iAy m x , i=1, 2, 3 [1].    

The above two assessment approaches treat differently the idea of the students’ 

performance and therefore the results obtained may differ to each other. In fact, in the first 
case the student group’s uncertainty during the MM process is connected to its capacity in 
obtaining the relevant information. In other words, in this case we are looking for the average 

group’s performance. On the other hand, in the case of the centroid technique the weighted 
average plays the main role, i.e. the results  of the performance close to the ideal performance 
have much more weight than those close to the lower end.  In other words, in this case we are 

mostly looking at the quality of the performance. It is argued that the combined application of 
these two approaches helps in finding the ideal profile of performance according to the user’s 

personal criteria of goals and therefore to finally choosing the appropriate approach for 
measuring the results of his/her experiments. 

                                                 
1
  In practice this means that we characterize each student’s performance with a numerical value (mark) instead 

of a linguistic label. 
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Voskoglou’s fuzzy model for MM can be used also (in a simplified form) for the 

students’ individual assessment. In fact, if n=1, then from the definition of the membership 

function 
iAm  it becomes evident that in each Ai, i = 1, 2, 3, there exists a unique element x of 

U with membership degree 1, while all the others have membership degree 0. Consequently 

there exists a unique student profile s with ms= 1, while all the others have membership 

degree 0. For example, if  
2 3

( ) 1, ( ) 1, ( ) 1
iA A Am d m c m b    , then s = (d, c, b). In other words, 

each student is characterized in this case by a unique profile, which gives us the requested 

information about his/her performance. The above characterization defines in general a 
relationship of partial order among students’ concerning their performance. For example, the 

profile (d, c, b) indicates a better performance than the profile (c, b, b). On the contrary, in 
case of profiles (d, c, b) and (c, c, c) the student possessing the first one demonstrates a better 
performance at the stage of analysis/mathematization of the MM process, while the student 

possessing the second one demonstrates a better performance at the stage of 
validation/implementation.   

A. Jones  developed a fuzzy model to the field of Education involving several theoretical 
constructs related to assessment, amongst which is a technique for assessing the deviation of a 
student’s knowledge with respect to the teacher’s knowledge , which is taken as a reference 

(see [11], [12]). Here we shall present this technique, properly adapted with respect to 
Voskoglou’s fuzzy model, as an alternative fuzzy method for the individual assessment of 

MM skills (see also [3])  

Let X= {A1, A2, A3} be the set of the stages of MM process as they have been considered 
above. Then a fuzzy subset of X of the form  

{(A1, m(A1)), (A2, m(A2)), (A3, m(A3)}can be assigned to each student , where the 
membership function m takes the values 0, 0.25, 0.5, 0.75, 1 according to the level of the 

student’s performance at the corresponding step. The teacher’s fuzzy measurement is always 
equal to 1, which means that the fuzzy subset of X corresponding to the teacher is {(A1, 1), 
(A2, 1), (A3, 1).  

Then the fuzzy deviation of the student i with respect to the teacher is defined to be the 
fuzzy subset Di={(A1,1-m(A1)), (A2, 1-m(A2)), (A3,1- m(A3)} of X. This assessment by 
reference to the teacher provides us with the ideal student as the one with nil deviation in all 

his/her components. 

Notice that each deviation Di corresponds uniquely to a student’s profile si.  For example, 

the deviation Di  = {(A1,0.75), (A2, 0.75), (A3,1)}  corresponds uniquely to the student {(A1, 
0.25), (A2, 0.25), (A3, 0)}, whose profile is si =  (b, b, a). In other words, the A. Jones 
technique is equivalent with Voskoglou’s method for the students’ individual assessment. The 

only difference is that the former expresses the fuzzy data with numerical values, while the 
latter expresses it qualitatively in terms of the fuzzy linguistic labels of U. 

Notice also that the teacher may put a target for his/her class and may establish didactic 
strategies in order to achieve it. For example he/she may ask for the deviation, say D, with 
respect to the teacher to be 0.25 0.5D  , for all students and in all steps.  In this case the 

application of the A. Jones technique could help the teacher to determine the divergences with 
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respect to this target and hence to readapt his/her didactic plans in order to diminish these 

divergences. 

Further details of the above fuzzy methods will be developed in the next section, when 
presenting the classroom experiment performed at the Faculty of Computer and Information 

Sciences of the Ain Shams University. 
 

3. The Classroom Experiment 
 

The subjects of the following experiment were 7 postgraduate students (M.Sc. program) 

of the Faculty of Computer and Information Sciences of the Ain Shams University, Cairo, 
Egypt. Obviously the above students had a rich background and experience on the use of 
computers in general and on applying computer techniques for modelling real world problems 

in particular. Also their mathematical background was strong enough, since they had attended 
four courses on Mathematics and two courses on Probability and Statistics during the first two 

years of their undergraduate studies, i.e. 2-3 years ago. This means of course that their 
knowledge on these subjects was not so fresh.  

Prof. Salem, the second of the authors of the present paper, being the tutor of the course 

of “Advanced Artificial Intelligence” of the M. Sc. program, introduced to the subjects of our 
experiment the basic ideas of papers [1] and [4] and then he asked them to solve the 10 

problems contained in the list of the Appendix of [1]. We recall that the mathematical topics 
related to these problems included elementary and linear algebra, differential and integral 
calculus, elementary differential equations and probability theory. The experiment was 

performed under the same conditions described in section 4 of [1]. The two authors marked 
together the students’ papers and they applied Voskoglou’s fuzzy methods in assessing their 

performance as follows:   
 

Individual assessment 

According to the marks obtained the student profiles were the following: s1= (a, a, a), 
s2= (b, b, a), s3= (c, b, b), s4= (c, c, b), s5= (c, c, c), s6= (d, c, c), s7= (d, d, d). In this 

particular case the above profiles define a relationship of total order among the students 
concerning their performance given by:  s1 < s2 < s3 < s4 < s5 < s6 < s7.  
      

The corresponding deviations with respect to the teacher are:  
D1= {(A1, 1), (A2, 1), (A3, 1)}, D2= {(A1, 0.75), (A2, 0.75), (A3, 1)}, 

D3= {(A1, 0.5), (A2, 0.75), (A3, 0.75)}, D4= {(A1, 0.5), (A2, 0.5), (A3, 0.75)}, 

D5= {(A1, 0.5), (A2, 0.5), (A3, 0.5)}, D6= {(A1, 0.25), (A2, 0.5), (A3, 0.5)}, 
D7= {(A1, 0.25), (A2, 0.25), (A3, 0.25)}. 

Group’s assessment 

Since the total number of the group’s students is n=7, the membership function
iAm , i=1, 

2, 3, is defined by  
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Observing the above students’ profiles one finds that at the stage of 

analysis/mathematization 1, 1, 3 and 2 students demonstrated very low, low, intermediate and 
high performance respectively. The corresponding numbers for the stage of solution are 1, 2, 
3, 1 and for the stage of validation/implementation are 2, 2, 2, 1. Therefore the stages of the 

MM process are represented as fuzzy subsets of U in the form: 

A1={(a,0), (b,0), (c, 0.5), (d, 0.25), (e,0)}, A2={(a,0), (b, 0.25), (c, 0.5), (d, 0), (e,0)}, 

A3={(a, 0.25), (b, 0.25), (c, 0.25), (d, 0), (e,0)}. 

The application of the centroid defuzzification technique on the above fuzzy data gives:  

    Stage A1:  
1 5(0.5) 7(0.25)

[ ] 2.833
2 0.5 0.25

cx


 


, Stage A2:  
1 3(0.25) 5(0.5)

[ ] 2.167
2 0.5 0.25

cx


 


, 

   Stage A3:  
1 0.25 3(0.25) 5(0.25)

[ ] 1.5
2 0.25 0.25 0.25

cx
 

 
 

   

Next we calculated the membership degrees of the students’ profiles and their 

possibilities, which are presented in Table 1. The outcomes of Table 1 were calculated with 
accuracy up to the third decimal point. Also, since the maximal membership degree is 0.062, 

the possibilities were calculated by the formula rs=
0.062

sm
. 

 

Table 1:  Membership degrees and possibilities of the students’ profiles 

A1 A2 A3 ms rs 

c b a 0.031 0.5   

c b b 0.031 0.5 

c c a 0.062 1 

c c b 0.062 1 

c c c 0.062 1 

d b a 0.016 0.258 

d b b 0.016 0.258 

d c a 0.031 0.5 

d c b 0.031 0.5 

d c c 0.031 0.5 
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Remark: The students’ profiles obtained by the data of our experiment enabled us to 

represent the stages Ai , i=1,2,3 of the MM process as fuzzy subsets of  U. However the 
converse is not true. In fact, given the Ai’s one cannot determine uniquely the corresponding 
student group. For example, it is straightforward to check that the student profiles (b, a, a), (c, 

b, a), (c, c, b), (c, c, c), (d, b, b), (d, c, e) and (e, e, e) determine the same Ai’s. One could also 
construct groups with n students, 7n  , corresponding to the same Ai’s. This explains why the 

profiles of Table 1 differ from those obtained by the data of our experiment.-          

According to the outcomes of the last column of Table 1 the group’s ordered possibility 
distribution is r:  r1= r2= r3=1, r4= r5= r6= r7= r8=0.5, r9= r10=0.258. Therefore the group’s 
strife (discord), which expresses conflicts among the sizes (cardinalities) of the various sets of 

alternatives, is ST(r)=

10

1

2

1

1
[ ( ) log ]

log 2
i i i

i

j

j

i
r r

r









 


301.0

1
(0.5

3 8 10
log 0.242log 0.258log )

3 5.5 6.016
    

3.32[(0.242)(0.163)+(0.258)(0.221)] 0.319 (see section 2 of [2] and p.28 of [13]).  

Also the group’s non-specificity (imprecision), which indicates that some alternatives 

were left unspecified is Ν(r)=

10

1

2

1
[ ( ) log

log 2
i i

i

r r i



 ]  

3.32(0.5 log3 0.242log8 0.258log10)   

3.32[(0.5)(0.477)+(0.242)(0.903) +0.258)] 2.36 (see section 2 of [2] and p.28 of [13]). 

    Thus the group’s total possibilistic uncertainty is T(r)=ST(r) + N(r)   2.679 
 

4. Comparison with Voskoglou’s Experiments    

The same experiment had been performed earlier by Voskoglou with two groups of 

students of the Graduate Technological Educational Institute (T. E. I.) of Patras, Greece. The 
first of them (G1) was a group of 35 students of the School of Technological Applications, i.e. 
future engineers, being at their second term of studies. Part (about the 1/3) of the lectures and 

the exercises of mathematical courses for the students of this School are performed in a 
computer laboratory, where the instructor presents the corresponding mathematical topics in a 

more “live” and attractive to students’ way, while the students themselves, divided in small 
groups, use already existing mathematical software to solve the problems with the help of 
computers.  The second group (G2) consisted of 50 students of the School of Management and 

Economics being also at their second term of studies. The topics covered in the mathematics 
course of the first term for G2 were almost the same with those for G1. The only difference 

was that the lectures in the mathematical courses for the students of the School of 
Management and Economics are performed in the classical way on the board including a 
number of exercises and examples connecting mathematics with real world applications and 

problems (for more details about these experiments see section 4 of [1]) and section 3 of [2]).  
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The values of T(r) were found to be 2.653 for G1 and 2.611 for G2 [2]. On comparing 

these values with the corresponding value 2.679 for the group of postgraduate students of the 
Ain Shams University (G3), one can see that no significant differences appear concerning the 
average performances of the three groups in the experiment.  In fact, the maximum difference 

of these values is 0.068, which is too small with respect to the values themselves.  

The application of the centroid defuzzification technique for the groups G1 and G2 (see 

section 4 of [1]) and G3 (see above) gave the following values for xc : 

Stage A1:   3.25 (G1), 2.5 (G2), 2.833 (G3) 

Stage A2:   2.833 (G1), 1.75 (G2), 2.167 (G3) 

Stage A3: The same value 1.5 for all groups 

Thus, according to our criterion (see section 2), at the stages A1 and A2 the group G1 

demonstrates a better performance than G3, which demonstrates a better performance than G2. 
Also the three groups demonstrate identical performances at the stage A3.  

5. Discussion and Conclusions 

In the present paper we compared the performances of the student groups’ G1, G2 
(T.E.I. of Patras, Greece) and G3 (Ain Shams University, Egypt) in solving 10 problems 

involving MM by using the Voskoglou’s fuzzy methods developed in [1] and [2]. The 
students of G1 and G2 had attended recently the mathematical course corresponding to the 
topics of these problems, in contrast to those of G3, who attended such courses 2-3 years ago. 

Therefore it was normally expected for G1 and G2 to demonstrate a better performance than 
G3. 

Calculating the groups’ total possibilistic uncertainty we found that no significant 
differences appeared with respect to the average performances of the three groups. On the 
contrary, using the centroid technique we found that the weighted average performance of G1 

(in which the results of the performance close to the ideal one have much more weight than 
those close to the lower end) at the first two stages of the MM process was better than that of 

G3, which was better than the corresponding performance of G2. We also found that the three 
groups demonstrated identical performances at the third and last stage of the MM process. 

Combining the above findings to the fact that the corresponding mathematical course 

for G1 was performed using the computers as a basic tool and that the students of G3 had a rich 
experience in using the computer techniques, we reach to the conclusion that very possibly 

the use of computers as a tool for problem solving enhances the students’ abilities in solving 
real world problems involving mathematical modelling. This is crossed by the experimental 
results presented in Voskoglou’s  ([1] and [4]) and in other researchers’  [15-16] earlier 

works.  

However, we believe that there is a need for further experimental studies on the subject, 

in order to obtain stronger and therefore safer statistical data. This is actually one of our 
priorities in our plans for further future research on MM. 
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