
Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 4, May 2013 ISSN-1110-2586

-14-

On Information System Architecture Supporting Acceptance Testing

Csaba Szabó and Veronika Szabóová

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice, Slovak Republic

csaba.szabo@tuke.sk, veronika.szaboova@tuke.sk

Abstract

Our goal is to extend common information system architecture by a systematically built
element that will directly support acceptance testing. To be able to support further activities

such as maintenance, we decided to develop a permanent system layer or component. This
paper presents detailed description of our goals and the abstract model of the proposed

architecture. The paper ends with future directions on possible implementation and practical
usage areas.

Keywords: Acceptance Testing, Horizontal Traceability, Information System Architecture,
Requirement, and Vertical Traceability.

1. Introduction

Nowadays, there are lots of program systems used in many different areas of human
life. When data are the main subject of these programs, the program system is called an

information system (IS). A plenty of methodologies exist for IS development, most of them
offer complete analysis of requirements on data structure and processing to provide proven

methods in implementation. Weakness of these methodologies is the lower level of flexibility,
because one significant change in the requirements implies another full iteration of the
methodology beginning with requirements analysis and validation using theoretical proofs [9].

Agile methods [10] are frequently used in software development when rapid delivery
and flexibility on changing user requirements is of higher priority than the usage of (semi)

formally proven processes.The most popular agile methods include Extreme Programming,
SCRUM, Test Driven Development, LEAN development, Crystal methods, Dynamic System

Development Method and Feature Driven Development.

In general, the process of software development and testing is divided into several

stages. The main difference between these stages from the project organization point of view
is the role of customers (respectively customer proxy) and end users.

There is a so-called R-I-E (requirements-implementation-evaluation) tripartite as we
presented in [6], that represents the possible roles in software development by their category.

The requirement role is the one defining requirements to the software before and during its

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 4, May 2013 ISSN-1110-2586

-15-

development (implementation). The implementation role is the one understanding the
requirements (and modifying them in several cases) and implementing the system based on

the knowledge derived from these requirements during the process of understanding [11]. The
evaluation role is the one verifying and evaluating the final system or its prototypes (as a

whole and/or by its modules and components) based on its own knowledge discovered during
the process of requirements’ understanding. In addition to that, it might use also other not
specified domain specific knowledge as well.The roles in the R-I-E tripartite are shown on

Fig. (1).

Figure (1): The R-I-E tripartite [6]

In the phase of acceptance testing, end users play an active role, because they are using

the product and are reporting defects and other issues. In the most cases, the complete set of
requirements in not available to these users, but they are equipped with serious domain

specific knowledge [4].

Our goal is to provide an architecture that will support identification of relations between

the explicitly defined requirements, their implementation and the hidden ones discovered
from the domain experts during acceptance testing.

The organization of the paper is as follows. In Section 2, we describe the problem in

detail. Section 3 is devoted to expression of basic types of information system architectures.

Section 4 denotes the acceptance testing process. We present our method and related
architecture proposal in Section 5, and we present future directions of our related research in

Section 6.

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 4, May 2013 ISSN-1110-2586

-16-

2. Problem Description

The requirements are changing. A selection of them is being created during the
requirements activity. These serve as the basis for implementation, which, in general, might

modify them by creating its own explanations and knowledge about them. The relation
between this knowledge and the initial requirements is expressed by vertical traces that join
implementation details with specific requirements these implementations are developed for.

In [5], vertical traceability is defined as the tracing of requirements through the layers of
development documentation to components or test components, respectively.

In unit testing, horizontal traces are used to maintain connection between the tests and
related components under test, and vertical traces to maintain connection between tests and
related requirements [12]. Our goal is to develop a similar property for acceptance testing

while focusing on automation of the traceability management.

Problem 1: There is no sufficient horizontal traceability in acceptance testing

The first problem is that there is no definition for the component under test in acceptance

testing, only for the system under test, i.e. the whole system. This means, that there is no
explicit implementation unit that could be given as reference for found defects in the system.
The module name and the process description using domain specific language might be

insufficient to identify a single source of error.

Problem 2: There is no sufficient management of vertical traceability in acceptance testing

The second problem lies in the language used: domain experts might use in their

feedback many formulations of the problem, and they might not have knowledge about
existing requirements. In other words, simple text processing (searching) within requirement

database will not always find a matching existing requirement, so the requirements phase
needs to re-run to identify existing vertical traces or to introduce new requirements into the
knowledge base of the project.

3. Information System Architectures

Literature presents many software architectures that could be implemented for

information systems [3]. The common feature of them is the usage of a database (or more
databases) to store the processed information. Another common property is the so-called

business logic representing information processing routines, access roles, and integrity
constraints.

We present several architectures for multiuser information systems:
 Multi-layer architecture consists of separated layers for presentation, business logic, and data.

 Modular resp. component-based architecture is characterized by a new behavior
achieved by integrating its components that provide separate functionalities.

 Service-oriented architecture (SOA), where independent services are combined to a
system to fulfill user requirements.

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 4, May 2013 ISSN-1110-2586

-17-

Business logic, data processing or presentation of information [1] might use artificial
intelligence in implementation [2]. Some parts of the system could be generated based on

design models or integrated using automated tools [7,8].

From the point of view of our proposal, these presented architectures are specific in their
way. SOA distributes functionality over independent services. Components combine their
functionalities to fulfill the requirement, but it is more important that these could use (or be

used by) a common component. Multi-layer systems eliminate traces between data and
presentation or limit the number of these traces (might also mask some traces).

4. Acceptance testing

Acceptance testing is defined in [5] as formal testing with respect to user needs,

requirements, andbusiness processes conducted to determine whether or not a systemsatisfies
the acceptance criteria and to enable the user, customers orother authorized entity to
determine whether or not to accept the system.

As end users, customers and/or customer proxies provide this type of testing, the direct

relation to the initial requirements cannot be guarantied.The professional qualities and used
domain specific language of the domain experts in the role of acceptance testers might imply

identification of inconsistencies in the requirement model and of missing requirements.

During acceptance testing process, testers fill defect report documents. This is very

important for our proposal as well, because the content of these reports is aimed to be
preserved, but the way of collecting data is modified by automation based on traceability
extensions.

5. Proposed Architecture and Method

The information system architectures have a common unit representing data storage

medium with a kind of its management, mostly implemented as a database schema with
defined integrity criteria running on a database management system. Our proposal is based on

this assumption.

The method

We propose a method, where additional database objects representing knowledge about

the system behavior extend the system’s database. To separate data logic of the system itself
and behavior records, there cannot be a direct connection (e.g. relation) to the real application
data. Therefore, data should be logged as part of behavior records.

 The process of the method is as follows:

1. Allow the user to report a defect anytime by filling a feedback form.
2. Allow the user to fill the feedback form if the system discovers a defect.
3. The user fills only domain specific text fields (describing a possibly new

requirement), but is also allowed to select from the list of requirements related to the
actually used unit of the system.

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 4, May 2013 ISSN-1110-2586

-18-

4. When sending the form (i.e. storing information into behavior records), the
information is extended by data from the application itself – these are used to

precisely locate the implementation unit the report belongs to, and data from the last
operation (to improve knowledge for better defect identification).

5. In the case of hidden error recovery in the system (i.e. defect is not reported to the
user), the behavior defect is recorded too.

6. As behavior records are stored independently, data consistency is not violated.

7. The stored data can be used after connecting the reporting/maintenance tool to the
system (as it is not intended to be a part of the production information system).

The method workflow is shown on Fig. (2).

Figure (2): The proposed method

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 4, May 2013 ISSN-1110-2586

-19-

Notes on the different architectures

For the presented three information system architectures, we present the following
implementation units:

1. Component-based architecture offers the solution using a shared reporting component
that will be used as the base for other components and for error recovery, equipped with
user interface element as defect reporting form. Implementation is possible in many

languages, because there isa number of components for logging that seem to be
extendable. Depending on the type of defect handling (presented to the user or not), the

records might contain besides component data a reference to an existing requirement as
well.

2. Multi-layer architecture makes almost impossible to implement the proposed method

for it. A reasonable solution might be the execution of each of its functions in a
reporting environment – e.g. in the frame of a special program, that has access to each

layer. This would violate architecture. Second alternative is to separate reporting into
layers:

a. Database layer reports are fully automated and are related only to invisible error

recovery (i.e. not propagated to upper layers in the form of messages). These
include relation definition to the tables, events and triggering procedures at

database level only.
b. Business layer (application logic) reports will be the ones, where automatic error

recovery for business logic solutions is implemented without showing an error or

information message to the user. These records include data information extended
by business layer related information.

c. Presentation layer reports are of two types: automatic/hidden and user reports. The
automatic in recording is related to the error recovery at this layer that does not
show up to the user. All other reports need user interaction. The automatic reports

include all available data. The user report will have an optional property assigning
the report to a specific requirement. For that, requirements must be defined and

stored together with the system implementation. The requirements must be
expressed using their original, domain specific form.As an option, agile models
such as user stories could be used.

3. For SOA, only separation of reporting is acceptable: with separated records related to
the specific service only; as these services are independent. To ensure communication

for defect recording, a specific type of method must be provided by each service. If the
defect is discovered only by the specific service, there is an implementation detail
whether it will inform the caller about it. If the caller (master application) discovers a

defect, it could ask the user for assistance and might record information related to
requirements as well. This is done only for the master and will not be sent to the used

services, because these must be independent. This architecture needs a kind of
requirement tracing, where requirements defined for the master system only are traced
to the implementing services.

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 4, May 2013 ISSN-1110-2586

-20-

6. Conclusion

We presented related work in the field of information system architectures and

requirement engineering with emphasis on vertical and horizontal traceability in software
projects.

After presenting the requirements-implementation-evaluation tripartite and the problems
of acceptance testing with the lacking traceability property, we presented our proposal of an
architecture, which provides the functionality to not only report a defect in the system, but

also automatically identifies its relations to the existing parts of the system.

The advantage of such a system is the ability to increase maintenance speed and
effectiveness, and to introduce new requirements together with traces onto existing
implementation units.

A disadvantage might be the extension of the whole system by additional database
objects reflecting its structure and implementing the required knowledge representation for

internal behavior.

The next step of our research is the implementation of experiments to ensure
applicability of the presented abstract architecture and method.

The future of the architecture and the whole approach is in its extendibility to a kind of
self-reflecting system by replacing the defect reporting interface by a hidden automated

behavior recording component. Further, the self-reflection could be used as a basis for self-
adaptation or self-healing after finding an appropriate evaluation and adaptation or healing

mechanism.

Acknowledgment

This work was supported by the Cultural and Educational Grant Agency of the Slovak

Republic, Project No. 050TUKE-4/2013: "Integration of Software Quality Processes in
Software Engineering Curricula for Informatics Master Study Programme at Technical
Universities ­ Proposal of the Structure and Realization of Selected Software Engineering

Courses."

Egyptian Computer Science Journal ,ECS ,Vol. 37 No. 4, May 2013 ISSN-1110-2586

-21-

References

[1] Szabó, Cs., “Concept of the Automated Information System Adaptation to Users'
Requirements,” 5th PhD Student Conference and Scientific and Technical

Competition of Students of Faculty of Electrical Engineering and Informatics
Technical University of Košice, Proceedings from Conference and Competition,
Košice, Slovakia, 2005, pp. 109-110.

[2] Szabó, Cs., Pločica, O., Havlice, Z., “Application of AI in the Multi-Layer
Architecture of Information Systems,” Proceedings of the Seventh International

Scientific Conference Electronic Computers and Informatics ECI 2006, Herľany,
Slovakia, September 20-22, 2006, Košice, VIENALA Press, pp. 52-57.

[3] Adamuščinová, I., Révés, M., Havlice, Z., “Using Architectural Knowledge in Process

of Software Maintenance,” SAMI 2010 The 8th International Symposium on Applied
Machine Intelligence and Informatics, Herlany, Slovakia, pp. 83–88, 2010.

[4] Kreutzová, M., Porubän, J., “Domain Usability of User Interfaces,” Proceedings of
CSE 2012 International Scientific Conference on Computer Science and Engineering,
Stará Lesná, High Tatras, Slovakia, October 3-5, 2012, pp. 39-46.

[5] Standard glossary of terms used in software testing, version 2.2, October 19, 2012.
Produced by the ‘Glossary Working Party’ International Software Testing
Qualifications Board.

[6] Samuelis, L. et al., Software Testing Fundamentals: Introduction to Software
Verification Theory, Faculty of Electrical Engineering and Informatics of the

Technical University of Košice, 2013.

[7] Pataki, N. et al., “Features of C++ Template Metaprograms,” Proceedings of the 8th
International Conference on Applied Informatics (ICAI 2010), Vol. 2., 2010.

[8] Simon, M., Pataki, N., “SQL Code Complexity Analysis,” Proceedings of the 8th
International Conference on Applied Informatics (ICAI 2010), Vol. 1., 2010, pp. 353-359.

[9] Samuelis, L., “Notes on the Emerging Science of Software Evolution,” Handbook of

Research on Modern Systems Analysis and Design Technologies and Applications,
USA, Idea Group Inc., 2008, pp. 172-179.

[10] Abrahamsson, P. et al. “Agile software development methods – Review and analysis,”

Otamedia Oy, Espoo: VTT Publishing, 2002.

[11] Egyed, A., Grünbacher, P.,“Supporting Software Understanding with Automated

Requirements Traceability,”International Journal of Software Engineering and
Knowledge Engineering (JSEKE), Volume 15, Number 5, 2005, pp. 783-810.

[12] Medvidovic, N., Grünbacher, P., Egyed, A., Boehm, B.,“Bridging Models across the

Software Life-Cycle,”Journal for Software Systems (JSS), Volume 68, Issue 3,
December 2003, pp.199-215.

