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Abstract 
 

In the last years, the use of Graphical Processing Units (GPUs) has witnessed ever 

growing applications for different computational analyses in the field of Life Sciences. In this 

work we present a CUDA-powered computational tool for the simulation of biological models 

defined as systems of mixed ordinary differential equations, based on both mass-action 

kinetics and Hill functions. The tool, named coagSODA, was purposely developed and 

applied for the analysis of a large model of the blood coagulation cascade. We present the 

biological results of a parameter sweep analysis of this model, and show that GPU can boost 

the computational performances up to 177× speedup. 

Keywords: GPU Computing, modeling, simulation 

 

1. Introduction 

Since the introduction of general-purpose Graphics Processing Units (GPUs) and of 

CUDA, the Nvidia’s GPU programming language, the adoption of graphics engines 

experienced a great boost in scientific applications related to Bioinformatics, Systems 

Biology and Computational Biology (see [1], [2], [3] and references therein). Indeed, the use 

of GPUs for in silico investigations of complex biological systems – where Central 

Processing Units (CPUs) traditionally represented the standard workhorses – is motivated by 

the need of performing large numbers of simulations to analyze the systems’ behavior in 

different conditions, which necessitate a computing power that usually overtakes the 

capability of standard desktop computers, therefore requiring high-performance computing 

solutions. 

Despite the considerable advantages in terms of computational speedup, scientific 

applications on GPUs risk to remain a niche for few specialists, since GPU-based 

programming substantially differs from CPU-based programming and, therefore, GPU 

computing requires the development and the implementation of ad hoc algorithms. To avoid 

such limitations, several packages and software tools were released (see, e.g., [3], [4], [5]), so 

that also users with no knowledge of GPUs hardware and programming can access the 

computing power of graphics engines. 

In this work we present coagSODA, a simulator of biological systems based on the 

GPU-powered tool cupSODA [6], which allows to run deterministic simulations of a given 
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mass-action based system of biochemical reactions, using the LSODA algorithm [7]. 

coagSODA was specifically designed for the analysis of the blood coagulation cascade 

(BCC), and it allows to efficiently execute a large number of parallel deterministic 

simulations at a considerable reduced computational cost with respect to CPUs. 

Blood is an essential component in human life, whose primary functions are to feed 

cells by delivering a multitude of nutrients, and to carry away the cellular wastes, such as 

carbon dioxide. Thanks to its key role in making diagnosis of numerous diseases, blood is the 

subject of an intense scientific research [8]. All blood components are kept within appropriate 

concentration ranges by means of fine-tuned regulatory mechanisms, ruled by several 

feedback controls; the constancy of blood composition is maintained thanks to the circulation 

through an intricate network of vessels. In particular, humans have evolved a complex 

hemostatic system that, under physiologic conditions, is able to maintain blood in a fluid 

state; however, in response to any vascular injury, this system is able to rapidly react and seal 

the defects in the vessels wall in order to stop the blood leakage [9]. Indeed, the circulatory 

system is self-sealing, otherwise a continuous blood flow from even the smallest wound 

would become a threaten for the individual’s life. 

These regulation processes are governed by means of the BCC, a complex network of 

cellular reactions which, under physiological conditions in vivo, are inhibited by the presence 

of intact endothelium [10]. In order to allow blood coagulation, in humans there exist 13 

blood clotting proteins, called coagulation factors, which are usually designated by Roman 

numerals I through XIII. Following a vascular injury, platelets become active and the tissue 

factor (TF, or factor III) is exposed in the subendothelial tissue, starting the BCC. The 

ultimate goal of BCC is to convert prothrombin (factor II) into thrombin (factor IIa - that is, 

the activated factor II), the enzyme that catalyzes the formation of a clot. Traditionally, the 

BCC is divided into the extrinsic and intrinsic pathways, both of which lead to the activation 

of factor X [11]. The last part of the cascade, downstream of this factor, is called the common 

pathway and leads to the formation of fibrin monomers, whose polymers finally constitute the 

backbone of the clot. 

Excluding thrombin, all the enzymes involved in blood clotting are characterized by a 

low activity, which increases upon binding to a specific protein cofactor (e.g., factors V and 

VIII) or to appropriate phospholipid surfaces (e.g., the plasma membranes of active platelets) 

[11]. In BCC pathways, there exist also inhibitory factors, which limit the activity of the 

various active proteases and, therefore, allow to regulate the whole reactions cascade. When 

the hemostatic system is unregulated, thrombosis (i.e., the formation of a blood clot 

obstructing the blood flow in vessels) may occur due to an impairment in the inhibitory 

pathway, or because the functioning of the natural anticoagulant processes is overwhelmed by 

the strength of the hemostatic stimulus [9]. 

In order to investigate the individuals’ variations in blood coagulation components, and 

the corresponding response to perturbed conditions, we consider here a Systems Biology 

perspective to analyze the alterations (prolongation or reduction) of the time necessary to 

form the clot in vivo (i.e., the clotting time). To this aim, we exploit a mathematical model of 

the BCC [12], built upon a previous model [13], that describes the intrinsic, extrinsic and 

common pathways and, more importantly, it accounts for the platelet activation, as well as the 
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presence of several inhibitors (e.g., the tissue factor pathway inhibitor (TFPI), antithrombin 

III and C1-inhibitor). Numerous mathematical models of blood coagulation have been 

developed in the last years, as they represent a useful tool for systematic studies of the 

intricate structure of the coagulation cascade, and allow to obtain a suitable reconstruction of 

empirical observations (see, e.g., [14], [15], [16]). 

 

 

Fig. 1. Reaction network of the blood coagulation cascade model considered in this work. 

Legenda. Light blue boxes: coagulation factors; brown boxes: inhibitors and related 

complexes; yellow boxes: fluorogenic detectors. Black arrows: complex formation; green 

arrows: catalytical activation; violet arrows: activation; red arrows: inhibition. 
 

The BCC model we consider is a slightly reduced version of the deterministic model 

given in [12], where we exclude a small set of reactions downstream of the clot formation – 

that is, the interactions between the fibrin polymers, thrombin and antithrombin III – since 

they do not have effect on the clotting time. A graphical sketch of the BCC model, which 

overall consists in 101 reactions among 81 molecular species, is given in Figure 1. The 

system of ordinary differential equations (ODEs), needed to carry out the simulations and the 

parameter sweep analysis presented in what follows is based on mass-action kinetics, except 

for 14 reactions that are formalized by means of Hill functions. The rationale behind the use 

of Hill functions relies on the need of modeling the physiological levels of thrombin 

concentration as a function of platelet activation, as described in [12]. 
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coagSODA, the GPU-accelerated simulator that we present and exploit in this work for 

the analysis of the BCC model, is a user-friendly and efficient tool that circumvents the need 

of manually defining the system of ODEs that describe the blood coagulation. More precisely, 

coagSODA is able to automatically derive the system of (mass-action and Hill functions 

based) ODEs – and then to perform their numerical integration – starting from the given set of 

101 biochemical reactions, which fully describe the molecular interactions between all the 

species involved in the BCC. 

The paper is structured as follows. In Section 2 we describe the GPUs and CUDA 

architecture, the simulation method at the basis of cupSODA tool, and then introduce the 

coagSODA simulator. In Section 3 we present the results obtained from the parameter sweep 

analysis of the BCC model, as well as a comparison of the performance of coagSODA with 

respect to a CPU-based implementation of LSODA. Finally, in Section 4 we conclude the 

paper with a discussion of the presented work. 

2. GPU-powered Simulation of Biological Systems 

2.1. CUDA Architecture and cupSODA Simulator 

Introduced by Nvidia in 2006, Compute Unified Device Architecture (CUDA) is a 

parallel computing platform and programming model that provides programmers with a 

framework to exploit GPUs in general-purpose computational tasks (GPGPU computing). 

GPGPU computing is a low-cost and energy-wise alternative to the traditional high-

performance computing infrastructures (e.g., clusters of machines), which gives access to the 

tera-scale computing on common workstations of mid-range price. However, due to the 

innovative architecture and the intrinsic limitations of GPUs, a direct porting of sequential 

code on the GPU is most of the times unfeasible, therefore making it challenging to fully 

exploit its computational power and massive parallelism [17]. CUDA combines the Single 

Instruction Multiple Data (SIMD) architecture with a flexible multi-threading, in which the 

conditional divergence between threads is automatically handled. Under CUDA’s naming 

conventions, the programmer implements the kernel, that is, a C/C++ function, which is 

loaded from the host (the CPU) to the devices (one or more GPUs), and replicated in many 

copies named threads. Threads can be organized in three-dimensional structures named 

blocks which, in turn, are contained in three-dimensional grids (a schematic description is 

given in Figure 2, left side). Whenever the host runs a kernel, the GPU creates the 

corresponding grid and automatically schedules each block on one free streaming multi-

processor available on the GPU, allowing a transparent scaling of performances on different 

devices. Threads within a block are executed in groups of 32 threads named warps. 

The GPU is equipped with different kinds of memory. In this work, we exploit the 

global memory (accessible from all threads), the shared memory (accessible from threads of 

the same block), the local memory (registers and arrays, accessible from owner thread), and 

the constant memory (cached and not modifiable). A schematic representation of this memory 

hierarchy is shown in Figure 2, right side. To achieve the best performances, the shared 

memory should be exploited as much as possible; however, it is very limited (i.e., 49152 

bytes for each multi-processor) and introduces restrictions on the blocks’ size. On the other 

hand, the global memory is very large (thousands of MBs) but suffers of high latencies. A 

solution to this problem was implemented on the Fermi architecture, where the global 

memory is equipped with a L1 cache. 
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The systematic analyses of models of biological systems often consist in the execution 

of large batches of simulations. One of the standard analyses that can be executed on such 

kind of models regards an intensive search within the parameters space, which requires large 

numbers of independent simulations. In order to reduce the computational burden, we 

previously implemented on the CUDA architecture one of the most efficient numerical 

integration algorithms for ODEs, LSODA [7]. This GPU-powered tool is called cupSODA 

[6], it exploits CUDA’s massive parallelism to execute different and independent simulations 

in each thread, thus reducing the computational time required by a standard CPU counterpart 

of LSODA. 

Besides being very efficient for the execution of many independent simulations, 

cupSODA is also user- friendly. As a matter of fact, LSODA was designed to solve ODEs 

systems written in the canonical form(i.e., defined as a system of equations of the form 

d[X]/d[t] = f([X], t), where [X] represents the concentration of the chemical species X), but the 

user is supposed to specify the system of ODEs by implementing a custom function that is 

passed to the algorithm. Moreover, in order to speed up the computation when dealing with 

stiff systems, in LSODA the Jacobian matrix associated to the ODEs system must be 

implemented as a custom function as well. On the contrary, cupSODA was conceived as a 

black-box simulator, that can be easily used without any programming skills. cupSODA 

consists in a tool to automatically convert a generic mechanistic reaction-based model of a 

biological system into the corresponding set of ODEs, complied with the mass-action kinetics 

[19], and to directly encode the obtained system – along with the corresponding Jacobian 

matrix – as C arrays. 
 

 

Fig. 2. Schematic description of CUDA’s architecture, in terms of threads and memory 
hierarchy. Left side. Thread organization: a single kernel is launched from the host (the CPU) 

and is executed in multiple threads on the device (the GPU). Threads can be organized in three-
dimensional structures named blocks which can be, in turn, organized in three-dimensional 
grids. The dimensions of blocks and grids are explicitly defined by the programmer. Right 
side. Memory hierarchy: threads can access data from different memories with different 

scopes. Registers and local memories are private for each thread. Shared memory let threads 
belonging to the same block communicate, and has low access latency. All threads can access 
the global memory, which suffers high latencies. Texture and constant memory can be read 

from any thread and are equipped with a cache as well; in this work we exploit the constant 
memory. Figures are taken from Nvidia’s CUDA programming guide [18]. 
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This fully automatic methodology can be exploited only for the simulation of models 

whose chemical kinetics is based on the mass-action law, that is, the fundamental empirical 

law that governs biochemical reaction rates which states that, in a dilute solution, the rate of 

an elementary reaction is proportional to the product of the concentration of its reactants 

raised to the power of the corresponding stoichiometric coefficient [20]. The BCC model that 

we investigate, though, includes a set of reactions that do not follow the mass-action kinetics 

[12]. In particular, the platelet activity is not explicitly modeled, but it is realized in the model 

by modulating the rate of the dissociation of the complexes formed on a platelet’s surface by 

means of a specific factor ε, which is calculated with a special equation during the integration 

steps. For this reason, cupSODA was purposely modified in order to consider the run-time 

computation of the specific kinetics of this set of reactions. 

2.2. coagSODA: a GPU-powered Simulator for the Blood Coagulation Cascade 

The coagSODA simulator is an extension of cupSODA, designed and implemented for 

the CUDA architecture, and specifically tailored for the simulation of the BCC model given 

in [12]. coagSODA realizes the runtime calculation of the ε value required to correctly 

simulate the activity of platelets; the variable ε depends on a Hill function that was fit against 

experimental data which quantify the platelet activation status (see details in [12]). The value 

of ε influences the formation of some complexes within the BCC, occurring on the platelets’ 

surface; namely, ε intervenes on their dissociation constants by modifying the activity of 

reactions of the form 

 

so that the corresponding standard ODEs are changed to yield new equations of the form: 
 

 

The set of reactions of the BCC model involved in the evaluation of ε is shown in Table I. 

Table I. Reactions in the BCC model influenced by the ε value for the simulation of the activity 

of platelets 
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The value of ε in Equation 1 depends on the following Hill function F, which quantifies 

the state of platelets’ activation according to the thrombin concentration (denoted as [IIa]), 

that is, the factor catalyzing the formation of the fibrin clot: 

 

 
 

where [IIa∗(t)] = maxt′∈[0,t]{[IIa(t′)]}, for a chosen time interval [0, t] of simulation. The 

value [IIa∗(t)] represents the maximum transient thrombin concentration, it is needed to 

simulate the fact that in physiological conditions the thrombin concentration starts decreasing 

after monotonically rising to a peak (Figure 3). So doing, [IIa∗(t)] never decreases once it 

reaches its maximum magnitude: [IIa∗(t)] is equivalent to [IIa(t)] until the concentration of 

factor IIa reaches the peak, while thereafter it remains constant at that value, which is the 

maximum in the considered time interval [0, t]. Function F allows to simulate the 

physiological condition whereby platelets remain active also when the thrombin concentration 

decreases. 
 

 

Fig. 3. Dynamics of thrombin in physiological condition 
 

For a given concentration [IIa], the maximum platelet activation state εmax is defined as: 
 

εmax = εmax0 + (1 − εmax0) · F([IIa∗(t)])   (2) 
 

where εmax0 defines the basal activation state of the platelet at simulation time t = 0. The 

value εmax0 is initially set to 0.01, assuming a basal 1% binding strength of coagulation factors 

to the resting platelet surface. When the full activation of platelets is reached, εmax is equal to 

1 and the complex dissociation constants are minimized [12]. 

coagSODA calculates at each time instant the platelets activation state ε by solving the 

following differential equation: 
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Where the constant k is inversely proportional to the time scale of platelets activation 

and is set to 0.005. This is consistent with the fact that platelets do not instantly achieve their 

maximum attainable activation state (εmax), but they reach it on a physiologically relevant 

timescale. 

In dealing with the 14 reactions in the BCC model that are influenced by this Hill 

function, the value of [IIa∗] must be stored in the GPU because, during each integration step, 

coagSODA recalculates Equation 2, which exploits the value [IIa∗] to determine a new ε 

value. Since the CUDA architecture does not offer static variables, the information for each 

thread has to be memorized in global memory. The accesses to the global memory and the 

computational costs due to the additional calculations slow down the integration process, with 

respect to the integration of ODEs performed according to a strictly mass-action based 

kinetics (as in the cupSODA simulator). Nevertheless, in Section 3.2 we show that our 

parallel implementation largely outperforms a sequential counterpart. 

3. Results 

3.1. A. Parameter Sweep Analysis of the BCC Model 

In this section we discuss the results of parameter sweep analysis (PSA) carried out on 

the BCC model, to investigate the prolongation and the reduction of the clotting time in 

response to perturbed values of some reaction constants, chosen according to their meaning 

within the whole pathway. PSA was performed by generating a set of different initial 

conditions – corresponding to different parameterizations of the model – and then 

automatically executing the deterministic simulations with coagSODA. 

The sweep analysis for single parameters (PSA-1D) was performed considering a 

logarithmic sampling of numerical values of each reaction constant within a specified range 

(with respect to its physiological reference value). The sweep analysis over pairs of 

parameters (PSA-2D) was performed by simultaneously varying the values of two reaction 

constants within a specified range, considering a logarithmic sampling on the resulting lattice. 

The logarithmic sampling allows to uniformly span different orders of magnitude of the 

parameters value using a reduced and fine-grained set of samples, therefore efficiently 

analyzing the response of the system in a broad range of conditions. 

 

Fig. 4. Dynamics of fibrinogen in physiological condition 
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The output of the PSA is the prothrombin time (PT), generally used in laboratory tests 

for monitoring the therapy with anticoagulant drugs, which is defined as the time necessary to 

convert the 70% of the fibrinogen in fibrin (see Figure 4), conventionally assumed to 

correspond to the time necessary to form the clot [21]. According to the model defined in 

[12], the PT in vivo is around 300 seconds in physiological conditions. We investigate here 

the response of the BCC by evaluating the clotting time in different conditions – namely, we 

carry out PSA-1D over the constant of two reactions (hereafter called reactions α and β) taken 

separately, and PSA-2D over the two constants together – in order to monitor both their 

individual effects and any possible coupled effect on the robustness of the BCC model. In 

each PSA, the value of the constants (hereafter denoted as kα and kβ ) was varied of six orders 

of magnitude with respect to their physiological values, that is, three below and three above 

the reference value. 

Reaction α, which describes the catalytical activation of factor V by factor IIa (IIa + V 

→ IIa-Va), was chosen because it represents the main positive feedback within the extrinsic 

pathway; reaction β, which is involved in the activation of factor XI by binding to factor IIa 

(IIa + XI → IIa-XI), was chosen because it represents the main positive feedback in the 

intrinsic pathway of the BCC model (see Figure 1). Moreover, preliminary PSA over all 

reaction constants of the BCC model evidenced that these two reactions are among the most 

relevant steps of the coagulation network. 

 

Fig. 5. Variation of prothrombin time (PT) according to PSA-1D over constant kα of reaction 

α : IIa + V → IIa + Va. The reference value of kα is 2·107, the sweep range is [2·104, 2·1010].  
 

The PSA-1D over kα shows that the PT is very sensitive to the perturbation of this 

reaction, when the physiological value of its reaction (i.e., kα = 2·107 M-1 s-1) is either 

increased or decreased; in particular, when kα is very low, a plateau in PT is reached since the 

strength of the positive feedback exerted by factor IIa is largely reduced, a condition where 

the contribution of the amplification of the hemostatic stimulus, due by the common pathway, 

to the formation of the clot is basically not effective (Figure 5). On the other side, the PSA-1D 

over kβ shows that while a decrease of the constant from its physiological value (i.e., kβ = 

1·108 M-1 s-1) does not have a substantial effect on the clotting time, an increase of its value 

leads to a progressive increase in the PT (Figure 6). This increase is due to the fact that factor 

IIa is sequestered in the formation of a complex with factor XI, and hence it is no longer 
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available as a free component in blood to participate in other reactions, especially those 

reactions of the extrinsic pathway which principally lead the clot formation in vivo. This 

behavior demonstrates that the intrinsic pathway has a secondary role in blood coagulation in 

vivo, compared with the extrinsic pathway, as also evidenced by various experimental 

observations [22]. 

Figure 7 shows the effect of the simultaneous variation of kα and kβ (over the same 

sweep ranges considered in the two PSA-1D). This result remarks a synergistic interplay 

between the two analyzed reactions, especially when the value of constant kα is low and 

constant kβ is high, since in this condition both the extrinsic and common pathways are 

inhibited and the PT is higher with respect to the values it reaches when only a single 

constant is changed. The anticoagulant effect achieved in this condition is due to the lack 

of the positive feedback of factor IIa, especially on factor V, which results in a reduced 

conversion rate of the fibrinogen into fibrin. 

3.2. CPU vs GPU Performance Comparison 

We present here the comparison of the computational effort required by GPU and CPU 

for the simulation of the BCC model, to the aim of showing the relevant speedup achieved by 

coagSODA. The performances of our GPU simulator were compared with those obtained 

using the LSODA algorithm implemented in the software COPASI [23], executing on the 

CPU the same set of simulations that were run on CUDA. COPASI is single-threaded and 

does not exploit the physical and logical cores of the CPU, therefore it represents a good 

benchmark as a single-node CPU-bound simulator of biological systems. 

 

 

Fig. 6. Variation of prothrombin time (PT) according to PSA-1D over constant kβ of reaction 

β : IIa + XI → IIa-XI. The reference value of kβ is 1·108, the sweep range is [1·105, 1·1011]. 
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Fig. 7. Variation of prothrombin time (PT) according to PSA-2D over reaction constants kα and kβ. 
 

In all the simulations, executed both on GPU and CPU, we stored 100 samples – 

uniformly distributed in the time interval considered for each simulation, i.e., [0, 700] seconds 

– of the dynamics of all the chemical species involved in the BCC model. The settings for the 

LSODA algorithm were the following: relative error 1·10−7, absolute error 1·10−13, maximum 

number of internal steps set to 20000. The GPU used for the simulation is a Nvidia Tesla 

K20c, with 2496 cores, equipped with 5 GB of DDR5 RAM. The performance of the GPU 

were compared against a personal computer equipped with a dual-core CPU Intel Core i5, 

frequency 2.3 GHz, 4 GB of DDR3 RAM, running the operating system Mac OS X Lion 

10.7.5. 

In Table II we report the running times required to run several batches of simulations, 

executed to carry out the PSA over the reaction constant kα, along with the speedup achieved 

on the GPU. The choice of comparing the performances of the GPU and CPU 

implementations by executing batches of simulations that are related to a PSA – instead of 

running n independent but identical simulations (i.e., all characterized by the same 

parameterization of the model) – is due to the fact that these results represent a more realistic 

scenario in the computational analysis of biological systems, whereby it is useful to 

investigate large search spaces of parameters, corresponding to different perturbed conditions 

of the model. Moreover, for the evaluation of the running time, the execution of a batch of n 

identical deterministic simulations would be futile. The figure clearly shows that coagSODA 

always performs better than the CPU counterpart. In particular, these results highlight that the 

advantage of exploiting the GPUs for the simulation of the BCC model becomes more evident 

as the number of simulations increases, with a 177× speedup when a PSA with 10000 

different parameterizations is executed: while the CPU performance linearly increases with 

the number of simulations, the running times are strongly reduced on the GPU, since in this 

case the overall running time roughly corresponds to the time required for the execution of the 

slowest simulations. Indeed, the different running times are due to the effort to manage the 

execution of blocks of threads on the GPU, as well as to the different parameterizations used 

in the PSA, both factors that can greatly affect the computational performances. Therefore, 

the GPU accelerated analysis of the BCC model with coagSODA represents a novel, relevant 

computational mean to investigate the behavior of this complex biological system under non-

physiological conditions, and could be exploited to efficiently determine the response of the 

BCC to different therapeutical drugs. 
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Table II. CPU vs GPU performance comparison 

Number of 

simulations 
CPU time (sec) GPU time (sec) Speedup 

10 

100 

1000 

10000 

1060.4 

11652.8 

107358.2 

1069981.8* 

120.81 

902.12 

2070.89 

6027.69 

8.7 × 

12.9 × 

51.8 × 

177.5 × 

* Estimated running time 

4. Conclusion  

Thanks to the high-performance computing capabilities and to the very low costs, GPUs 

nowadays represent a suitable technology for the development and the application of parallel 

computational methods for in silico analysis of complex biological systems, to the aim of 

carrying out fast simulations and analyzing their emergent behaviors in different conditions. 

However, the implementation of efficient computational tools able to fully exploit the large 

potentiality of GPUs is still challenging, since good programming skills are required to 

implement GPU-based algorithmic methods, and to handle specific features of GPU 

computing, as the efficient usage of memory or the communication bandwidth between GPU 

and CPU. Moreover, algorithms cannot be directly ported on the GPU because of the limited 

programming capabilities allowed by GPU kernels; as a matter of fact, they need to be 

redesigned to meet the requirements of the underlying SIMD architecture. 
 

In this work we presented coagSODA, a GPU-powered simulator specifically 

developed for the efficient simulation of the BCC model firstly introduced in [12]. 

coagSODA was designed to offer a black-box solution usable by any final user in an easy 

way. It relies on cupSODA, a numerical integrator for ODEs that we previously implemented 

for the GPU architecture, based on the LSODA algorithm and capable of automatically 

translating a reaction-based model into a set of coupled ODEs. coagSODA implements 

specific functions to compute the kinetics of mass-action and Hill function- based reactions, 

such as those involved in the platelets activity of the BCC model. coagSODA exploits the 

massive parallel capabilities of modern GPUs, and our results demonstrated that it can 

achieve a relevant reduction of the computational time required to execute many concurrent 

and independent simulations of the BCC dynamics. The mutual independence of the 

simulations allows to fully exploit the underlying SIMD architecture; moreover, coagSODA 

benefits from an additional speedup, thanks to our choice of storing each system state into the 

low-latency shared memory (a solution that was already implemented in cupSODA). Since 

the BCC model is large (101 reactions, 81 chemical species), a large amount of shared 

memory was assigned to each thread, strongly reducing the theoretical occupancy of the GPU, 

i.e., the ratio of active warps with respect to the maximum number of warps supported by 

each streaming multi-processor of the GPU. 
 

The results of the analysis presented in this work, performed on the BCC model, show 

that coagSODA allows a relevant boost with respect to a reference CPU implementation. For 

instance, in the case of 10000 simulations to carry out the PSA of the model, we achieved a 
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noticeable 177× speedup. Interestingly, the performances of coagSODA are better than 

COPASI even for small batches of simulations. These results indicate that, for this kind of 

biological models, consisting in many reactions and many species, our GPU implementation 

becomes more profitable than the CPU counterpart as the number of concurrent simulations 

increases, making it suitable especially when performing demanding computational analysis 

such as, e.g., parameter sweep, parameter estimation or sensitivity analysis. 
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