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Abstract 

The need for effective and efficient 3D object retrieval approaches is emerging in a 

broad range of applications in science and engineering.  With the increasing understanding of 

shape geometry and topology in the context of shape similarity, workable solutions for 3D 

object retrieval are being produced. In this paper, we present a novel technique for 3D Object 

Retrieval. The key idea of the proposed approach is based on the synergy between Heat 

Kernel Signatures (HKS) and Bag of Features (BoF) paradigm. For a given 3D model, the 

proposed approach considers a set of feature points, defined by an innovative feature point 

detection algorithm, and associate them with a compact HKS feature descriptor. Then, a 

vocabulary is constructed and BoF vector describing each 3D model is computed. Finally, the 

challenging problem of matching two given 3D models sums up to measuring the distance 

between their corresponding BoF distributions. The proposed approach is not only 

computationally efficient but also highly discriminative. It achieves state of the art results on 

SHREC 2011 dataset of non-rigid models, confirming its invariance to different kinds of 

deformation and possible noise.  
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1. Introduction 

3D Object Retrieval plays an important role in many today’s applications. It is now 

recognized as one of the most significant research areas in computer graphics and multimedia. 

As a result of emerging multimedia computing technologies, large databases of 3D models are 

distributed freely or commercially on the World Wide Web. Therefore, it is necessary to 

design 3D object retrieval methods which enable the users to efficiently and effectively search 

interested 3D models. The primary challenge to a content based 3D object retrieval system is 

how to extract the most representative features to discriminate the shapes of various 3D 

models. Generally speaking, there are some desirable properties for a typical 3D object 

retrieval method. It should represent important shape properties while being independent of 

3D object representation. Additionally, it is anticipated to be compact to store, insensitive to 

noise and quick to compute and compare. Another important requirement is being invariant to 

different kinds of deformations and transformations. 

Over the last years, the content based 3D object retrieval problem has been extensively 

investigated in the literature. A large number of competing techniques have been developed 

for the purpose of content based retrieval of 3D objects. Recently, Sun et al. [1] proposed 

Heat Kernel Signatures (HKS) as a deformation invariant descriptor based on diffusion 

geometry. Bronstein et al. [2] presents a scale invariant version of the HKS. Fang et al. [3,4] 

defined the Temperature Distribution (TD) of the Heat Mean Signature (HMS) as a shape 

descriptor for shape matching. Ohbuchi et al. [5] use Bag of features (BoF) approach as a part 
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of their introduced method. The method, named Bag-of-Features SIFT (BF-SIFT), employs 

Scale Invariant Feature Transform (SIFT) by Lowe [6]. An improved algorithm was propped 

by Furuya and Ohbuchi [7] , which extracts much larger number of local visual features by 

sampling each depth image densely and randomly. The method applies GPU for SIFT feature 

extraction and an efficient randomized decision tree for encoding SIFT features into visual 

words. Shape Google Work by Bronstein et al. [8] introduce a shape retrieval method based 

on the HKS, where a shape is represented by a Bag of Features (BoF) vector. 

The rest of this paper is organized as follows. Section 2 provides an overview of our 
proposed technique for 3D Object Retrieval, explaining the four consecutive phases 
constituting the proposed technique. Section 3 shows the experimental results. Finally, 
conclusions and suggestions for future works are given in Section 4. 

2. Proposed Approach Overview 

The process of our proposed 3D object retrieval technique proceeds through four main 
phases: HKS Computation, Feature Point Detection and Description, Bag of Features and 
finally the Matching phase. Basically, the initial phase of HKS computation computes HKS 
descriptor for each 3D model in order to be used successively by feature detection and 
description phase. During feature detection and description phase, an initial set of feature 
points are first detected from 3D models which then undergo an innovative filtering technique. 
The main intention of such filtering technique is to discard irrelevant feature points keeping 
only stable significant feature points entirely describing a given 3D model. At the end of this 
phase, each feature point emerging from the filtering technique is associated with a compact 
HKS-based feature descriptor vector in order to construct the final feature space. The next 
phase is the Bag of Features phase, which is subdivided into two main sub phases: vocabulary 
construction sub phase and 3D object representation sub phase. Throughout the vocabulary 
construction sub phase, a geometric vocabulary is built by clustering the feature space, such 
that the clusters’ centroids represent the geometric words of the constructed dictionary. Then, 
3D object representation sub phase performs vector quantization in the feature space in order 
to represent each 3D model by its BoF vector. The final matching phase determines the 
similarity or dissimilarity of given 3D models through comparing their corresponding BoF 
vectors. Each of these phases constituting the proposed 3D object retrieval approach will be 
described comprehensively through the following sub sections. 

2.1. HKS Computation 

HKS computation phase is considered an essential preliminary stage, where its results of 
computed HKS point signatures will be intensively used in the following phase of feature 
detection and description. For discrete computation of the Heat Kernel Signature, first the 
Laplace-Beltrami operator is estimated on triangular meshes. Second, the smallest 
𝒌 eigenvalues and eigenfunctions of the Laplace-Beltrami operator are calculated. Then, HKS 
can be computed by uniformly sampling 𝒎 points in the logarithmically scale over the time 
interval [𝒕𝒎𝒊𝒏, 𝒕𝒎𝒂𝒙] with: 

tmin = 4 ln 10 /λk (1) 

and  

tmax = 4 ln 10 /λ2 (2) 

where 𝜆2 and 𝜆𝑘 are the second and the kth (last) eigenvalues, respectively. 
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Sun et al. [1] indicates that HKS remains unchanged for 𝑡 > 𝑡𝑚𝑎𝑥 as it is mainly 
determined by the eigenvalue 𝜆2, while in order to estimate the HKS with 𝑡 < 𝑡𝑚𝑖𝑛  one needs 
to compute more eigenvalues and eigenfunctions. At small time values, HKS captures local 3D 
model information. As time elapses the signature tends to capture more global 3D model 
details. However there is a limit on how small 𝑡 can be for which the HKS can be estimated 
faithfully, which determined by the resolution of the mesh.  

Finally, for each vertex 𝑥 of the 3D model, HKS can be computed at each time scale 

over the interval [𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑎𝑥] using the following equation: 

Kt(x, x) =  ∑ e−λit

k

i=0

 ϕi(x)2 (3) 

where 𝜆𝑖 and 𝜙𝑖 are the 𝑖𝑡ℎ eigenvalue and eigenfunction of the Laplace-Beltrami 

operator respectively.  

In a real discrete environment, given a triangular mesh with 𝒏 vertices, Laplcaian matrix 

and its corresponding 𝒌 eigenvalues and eigenfunctions are first computed. Since the Laplacian 

is represented by a sparse matrix (𝑛 × 𝑛), calculating several dozen of eigenvalues and 

eigenfunctions remains a considerably fast procedure. Then, 𝒎 time scales are defined over the 

interval [𝒕𝒎𝒊𝒏 , 𝒕𝒎𝒂𝒙] for computing the HKS. Finally, HKS descriptor (feature vector of length 

𝑛 × 𝑚)can be computed using these eigenvalues, eigenfunctions and time scales applying 

equation (3).  

2.2. Feature Point Detection and Description 

This phase is subdivided into three main sub phases: Feature Detection, Filtering and 

Feature Description. First, the feature detection sub phase considers the HKS critical points on 

the surface of a given 3D model to act as a handful of primary feature points. For a given 3D 

model in a real discrete environment, each vertex is currently represented by a feature vector of 

length 𝒎 representing HKS values at 𝒎 time scales along the interval [𝒕𝒎𝒊𝒏 , 𝒕𝒎𝒂𝒙], computed 

from the preliminary phase of HKS computation. A point 𝑥 is a critical point, i.e. local 

maxima, if 𝑲𝒕(𝒙, 𝒙) > 𝑲𝒕(𝒙𝒊, 𝒙𝒊) for all 𝒙𝒊 in the 2-ring neighbourhood of 𝒙. Therefore, each 

point 𝑥 is checked at the 𝒎 time scales to compare its HKS value with its neighborhood’s 

values in order to determine whether it is a critical point or not. 

Second, the filtering sub phase minimizes the number of initially extracted feature 

points by eliminating the insignificant ones. The main objective of such filtering technique is 

to present a compact set of significant feature points capable of describing the 3D model’s 

geometry efficiently, while remaining stable under small perturbations. Keeping the number 

of feature points as minimum as possible reduces the time and space required for clustering 

the feature space. 

Finally, the feature description phase associates each of these significant feature points 

with a 𝑑-dimensional feature descriptor (𝒑(𝒙)) that is: compact in size, efficient to compute, 

informative, discriminative and robust. Thus, a subset of 𝑚-dimensional HKS feature 

descriptor 𝐾𝑡(𝑥, 𝑥) is selected to encode each feature point at 𝒅 significant time scales such 

that 𝑑 ∈ ℝ+𝑎𝑛𝑑 𝑑 < 𝑚. This chosen subset acts as a window on the 𝑚-dimensional feature 
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descriptor keeping the most discriminative and informative 𝑑 HKS values, whereas ignoring 

those redundant and non-discriminative 𝑚 − 𝑑 HKS values. Earlier to selecting such 𝒅-

dimensional feature vector (𝒑(𝒙)), HKS feature descriptor should undergo an essential 

preliminary phase of normalization.  Each feature descriptor (𝑲𝒕(𝒙, 𝒙)) associated with feature 

points need to be normalized in order to facilitate the process of clustering the feature space. 

This normalization process produces a normalized 𝒎-dimensional feature vector (𝒉(𝒙)), such 

that: 

ℎ(𝑥) = (ℎ1(𝑥), … , ℎ𝑚(𝑥)); 

ℎ𝑖(𝑥) = 𝑐(𝑥)𝐾𝑡𝑖
(𝑥, 𝑥) 

(4) 

where the constant 𝑐(𝑥) is selected in such a way that ‖ℎ(𝑥)‖2 = 1 [9]. 

 The experimental results section will show our conducted experiments for choosing the 
most optimum 𝑑-dimensional feature descriptor (𝒑(𝒙)) that could achieve successful retrieval 
results. 

2.3. Bag of Features 

Feature detection and description phase yields a set of succinct feature points each 
described with 𝑑-dimensional feature vector 𝑝(𝑥). These detected feature points together with 
their associated HKS based feature descriptor (𝑑-dimensional feature vector) acts as a 
distinctive signature for a given 3D model describing its most significant features. 
Unfortunately, the complexity of using such distinctive signature directly for the purpose of 3D 
matching and retrieval is extremely high and unfeasible. Therefore, Bag-of-Features (BoF) 
paradigm [9] is applied. BoF paradigm is mainly divided into two main sub phases: 
Vocabulary Construction and 3D Object Representation. 

The key idea if the first sub phase of vocabulary construction is to cluster the descriptor 
space using an adequate clustering technique so as to construct the required geometric 
vocabulary 𝒫 = {𝑝1, … , 𝑝𝑣}. It is important to highlight that the number of clusters (𝐾) is 
equivalent to the vocabulary size (𝑣). The 𝑣 centroids of the clusters represent the visual 
geometric words of the vocabulary {𝑝1, … , 𝑝𝑣}, such that each visual word 𝑝𝑖 is a 𝑑-
dimensional HKS based feature vector.  

Then, 3D object representation sub phase represents a given 3D model by a compact 
shape descriptor 𝐹(𝑋). Such shape descriptor represents the 3D model’s relation with the 
geometric vocabulary through computing the distribution of geometric words. Given a 
geometric vocabulary 𝒫 = {𝑝1, … , 𝑝𝑣} and a 3D model 𝑋 with  𝑛 vertices {𝑥1, … , 𝑥𝑛}, where 
each vertex 𝑥 is associated with a 𝑑-dimensional HKS-based descriptor 𝑝(𝑥), it is feasible   to 
compute a feature distribution 𝜃(𝑥) for each vertex 𝑥. Such feature distribution 𝜃(𝑥) =
{𝜃1(𝑥), … , 𝜃𝑣(𝑥)}𝑇 is a 𝑣 × 1 vector whose elements are defined as follows: 

 

𝜃𝑖(𝑥) = 𝑐(𝑥) 𝑒
−

‖𝑝(𝑥)−𝑝𝑖‖2
2

2𝜎2  (5) 

 

where 𝑐(𝑥) is selected in such a way that ‖ 𝜃(𝑥)‖ = 1 [8].  
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θi(x) can be interpreted as the probability of the vertex 𝑥 to be associated with the 
geometric word or descriptor 𝑝𝑖 from the constructed geometric vocabulary 𝒫. Equation (5) 
represents the “soft” version of vector quantization. By choosing the parameter σ ≈ 0, the 
process boils down to the standard “hard” vector quantization. Applying hard vector 
quantization is analogous to signing each descriptor 𝑝(𝑥) the index of its nearest neighbour 𝑝𝑖 
in the geometric vocabulary. In case of hard vector quantization, elements of feature 
distribution 𝜃(𝑥) = {𝜃1(𝑥), … , 𝜃𝑣(𝑥)}𝑇 can be defined as follows: 

 

𝜃𝑖(𝑥) = 1  𝑖𝑓 𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖 𝜖 [1…𝑣] ‖𝑝(𝑥) − 𝑝𝑖‖; 

𝜃𝑖(𝑥) = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(6) 

where 𝑣 is the number of geometric words in the vocabulary. 

After vector Quantization, the feature distribution 𝜃(𝑥) is finally integrated over the entire 
3D model, yielding a 𝑣 × 1 vector F(X): 

𝐹(𝑋) =  ∫ 𝜃(𝑥) 𝑑𝜇(𝑥)

𝑋

 (7) 

which is referred as a Bag-of-Features (BoF) or Bag-of-Words (BOW).  

The feature vector 𝐹(𝑋) is considered a compact and significant descriptor for a given 3D 
model 𝑋 [9]. It should be pointed out that in a real discrete environment, BoF is computed as 
follows: 

𝐹(𝑋) =  ∑ 𝜃(𝑥𝑖)

𝑛

𝑖=1

 (8) 

where 𝑛 is the number of vertices for a given 3D model 𝑋. 

2.4. Matching 

The feature vector representing the bag of features computed for a given 3D model 
through our proposed 3D object retrieval technique, entirely reflects its geometrical features 
and is highly discriminative compared to other feature descriptors. Thereupon, two given 3D 
models can be compared by comparing their corresponding bags of features. For comparing 
two 3D objects, their corresponding bags of features are treated as feature vectors (histograms), 
such that their similarity or dissimilarity can be determined through calculating the distance 
between their bags of features. Similar 3D models tend to have similar bags of features, 
whereas different 3D models tend to have different bags of features. 

In order to compare two given 3D models 𝑋 and 𝑌, the distance 𝑑𝐵𝑜𝐹 between the two 
bags of features 𝐹(𝑋) and 𝐹(𝑌) is defined as follows: 

𝑑𝐵𝑜𝐹 = ‖𝐹(𝑋) − 𝐹(𝑌)‖ (9) 

On comparing two given 3D models, smaller values of distance (𝑑𝐵𝑜𝐹) indicates that the 
two 3D models are highly similar to each other, while on the other hand higher values of 𝑑𝐵𝑜𝐹 
indicates that the two 3D models are dissimilar to each other. Several retrieval experiments 
will be carried out through the following section proving the correctness of the proposed 3D 
objet retrieval approach. 
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3. Experimental Results 

3.1. Dataset and Evaluation Metrics 

The shape retrieval dataset SHREC 2011 [10] is selected to evaluate the proposed 
approach and test its performance. It is the latest published online dataset dedicated for non-
rigid 3D models. It is a large scale dataset consisting of 600 non-rigid 3D models that are 
equally classified into 30 categories. The 3D models are represented as watertight triangular 
meshes that are derived from 30 original models, represented in different deformed versions. 
The database contains a set of models which have similar overall appearances but belong to 
various categories because they are different in the details of local regions or/and topological 
structures. SHREC 2011 is the most diverse non-rigid 3D shape database available today in 
terms of object classes and deformations. 

For the sake of quantitative assessment of the proposed approach performance, the 
following evaluation metrics are considered: 

 Nearest Neighbour (NN): It is the percentage of queries for which the closest match 

belongs to the query’s class.  

 First Tier (FT): It is the recall for the (𝐶 − 1) closest matches, where 𝐶 is the cardinality of 

the query’s class  

 Second Tier (ST): It is the recall for the 2(𝐶 − 1) closest matches. It is a little less stringent 
than the First Tier statistic, since the considered closest matches are twice as big in case of 
First Tier computation.  

 E-Measure: This evaluation measure considers only the first 32 retrieved models for every 
query and calculates the precision and recall over those results. The maximum score is 1.0, 
and higher values indicate better results. 

 Discounted Cumulative Gain (DCG): This statistic gives more importance to correct 
detections near the front of the list more than correct results later in the ranked list; the 
objective is to reflect how well the overall retrieval would be viewed by a human.  

 Mean Average Precision (𝐦𝐀𝐏): It is also known in information retrieval as “average 
precision at seen relevant documents”. It determines precision at each element when a new 
relevant 3D model gets retrieved; such that 𝒎𝑨𝑷 favours systems which return relevant 
3D models fast. 

3.2. Parameters Settings 

We conducted various experimental results to choose the optimum value or optimum 
way of computation for different influential parameters included within our proposed 
technique for 3D object retrieval. Since it will be hard to exhaustively show in detail all these 
experiments, we are going to focus only on the most influential parameter within our 
approach, which is the 𝑑-dimensional feature descriptor (𝑝(𝑥)) used for feature description . 
Several experiments are conducted to select the optimum way for selecting such vital 𝑑-
dimensional feature descriptor (𝑝(𝑥)) achieving the best retrieval results. This is achieved by 
directly taking a subset of the normalized 𝑚-dimensional HKS-based feature vector (ℎ(𝑥)) in 
different ways, where 𝑚 is equal to 100. One could think that choosing the feature descriptor 
𝑝(𝑥) incorporating the values existing at the end of the feature vector ℎ(𝑥) could achieve best 
results, since the HKS values at the end of the feature vector 𝐾𝑡(𝑥, 𝑥) are more stable than that 



Egyptian Computer Science Journal Vol. 38 No. 1 January 2014       ISSN-1110-2586 
 
 

 

 
 

-7- 

at its beginning, where they remain almost unchanged at 𝑡 values approaching the 𝑡𝑚𝑎𝑥. 
Therefore, the first experiment (Run 1) is applied by selecting  p(x) to include the last six 
values [ℎ95, ℎ96, ℎ97, ℎ98, ℎ99 𝑎𝑛𝑑 ℎ100] in the feature vector ℎ(𝑥), producing a sixth 
dimensional feature descriptor.  

Another intuitive idea may arise from treating the 100 HKS values in the feature vector 
ℎ(𝑥) as a signal which needs to be described or encoded by the most significant values or 
statistical measurements that could best describe its behavior. Thus the second experiment 
(Run 2) is conducted by selecting the minimum, maximum, mean, median and standard 
deviation of the 100 HKS values producing a fifth dimensional feature descriptor 𝑝(𝑥). On 
the other hand, the third, fourth and fifth experiments are conducted by sampling the HKS 
values in different ways using different intervals. In the third experiment (Run 3), 𝑝(𝑥) is 
chosen to incorporate a sequence of HKS values with interval equals to 5 starting with h5 and 
ending with ℎ95 producing a feature vector of dimensionality equals to 19. The fourth 
experiment (Run 4) is conducted by increasing the interval to 10; such that the feature vector 
𝑝(𝑥) is chosen to incorporate a sequence of HKS values beginning with ℎ10 and ending with 
ℎ90 producing a ninth dimensional feature descriptor 𝑝(𝑥). Finally, the fifth experiment (Run 
5) is conducted by increasing the interval to 20, such that the feature vector 𝑝(𝑥) is chosen to 
incorporate a sequence of HKS values starting with ℎ20 and ending with ℎ80 producing the 
shortest feature descriptor with fourth dimensionality. Table 1 summarizes how p(x) is 
selected during our five conducted experiments, where the rightmost column indicates the 
dimensionality of the 𝑝(𝑥)  feature vector. 

Table 1. Different selections of the 𝒅-Dimensional feature descriptor (𝒑(𝒙)) in our five 

conducted experiments 

Run 𝐩(𝐱) Dimensionality (𝒅) 

Run 1 [ℎ95(𝑥), ℎ96(𝑥), ℎ97(𝑥), ℎ98(𝑥), ℎ99(𝑥), ℎ100(𝑥)] 6 
Run 2 [𝑚𝑖𝑛 (ℎ(𝑥)), 𝑚𝑎𝑥(ℎ(𝑥)), 𝑚𝑒𝑎𝑛(ℎ(𝑥)), 𝑚𝑒𝑑𝑖𝑎𝑛(ℎ(𝑥)), 𝑠𝑡𝑑𝑒𝑣(ℎ(𝑥))] 5 
Run 3 [ℎ5(𝑥), ℎ10(𝑥), … , ℎ90(𝑥), ℎ95(𝑥)] 19 
Run 4 [ℎ10(𝑥), ℎ20(𝑥), … , ℎ80(𝑥), ℎ90(𝑥)] 9 
Run 5 [h20(x), h40(x), h60(x), h80(x)] 4 

Table 2 shows the effect of varying the selection of the 𝒅-dimensional feature descriptor 
(𝒑(𝒙))  on the overall retrieval performance through our five conducted experiments. The six 
evaluation metrics used here are NN, FT, ST, E, DCG and MAP. All these experiments are 
evaluated on the whole database of SHREC 2011.  

It is obvious from Table 2 that the first experiment (Run 1) attains the worst results 
compared with the other four experiments. This Run was expected to outperform other 
experiments since it represents the 𝑝(𝑥) with the most expectedly stable HKS values (last 6 
values in the ℎ(𝑥) feature vector), but conversely in practice it is found that such 
approximately similar values describing feature points fail in providing a feature space with 
sufficient variability. Such variability is essentially required to achieve a successful clustering 
that is capable of producing distinct significant geometric words during vocabulary 
construction phase. Moreover, it can be easily detected that the fifth experiment (Run 5) 
outperforms all other experiments, particularly upon considering the FT, ST, E and MAP 
evaluation metrics, which is fortunately the one owning the shortest and most compact feature 
descriptor 𝑝(𝑥) with dimensionality equals to four. It is worth mentioning, that being compact 
in size is one of the most important requirement that should be achieved in a feature descriptor. 
Using a feature descriptor of fourth dimensionality will have an influential effect on reducing 
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both the time and space complexities required for clustering the feature space during the 
vocabulary construction phase. It is also observed that the last four runs achieve the ideal score 
of NN evaluation measure (equals to 1). Thus, if the feature descriptor 𝑝(𝑥) is selected in a 
way similar to any of those four compared experiments then the first retrieved 3D model in the 
ranked list will be correctly retrieved for all query models in the database. 

Considering the values of NN, ST, E, DCG and MAP evaluation metrics, the third and 
the fifth runs achieve approximate performance results outperforming other experiments. Even 
if we assume that they have exactly similar high performance results, it is more sensible to 
choose the more compact feature descriptor which makes 𝑝(𝑥) tested by the fifth run a more 
favourable choice than that tested by the third run. It should be pointed out that the length 
(dimensionality) of the feature descriptor 𝑝(𝑥) tested by the third run (𝑑 = 19) is almost five 
times the dimensionality of the feature descriptor tested by the fifth run (𝑑 = 4). 

Table 2. Performance of proposed approach using different choices of 𝒅-dimensional feature descriptor 

(𝒑(𝒙)) 

Run NN FT ST E DCG MAP (%) Dimensionality(𝒅) 

Run 1 0.943 0.786 0.865 0.632 0.922 83.47 6 

Run 2 1 0.977 0.99 0.736 0.997 98.8 5 

Run 3 1 0.985 0.994 0.739 0.998 99.3 19 

Run 4 1 0.984 0.994 0.738 0.997 99.19 9 

Run 5 1 0.988 0.995 0.741 0.998 99.44 4 

For the HKS computation of a 3D model with 𝑛 vertices, first the cotangent weight 
scheme [11] is used for discretizing the Laplace-Beltrami operator (Laplacian matrix) on 
triangular meshes. Through experimental results, this discretization proves to perform better 
than other discretization techniques such as mesh Laplace operator [12] and preserves many 
important properties of the continuous Laplace-Beltrami operator, such as positive semi-
definiteness, symmetry and locality. Then, the sparse eigensolver implemented in Matlab 
computes the smallest 300 eigenvalues and eigenvectors ( 𝑘 = 300 ) of the Laplace-Beltrami 
operator. Finally, HKS (Kt(x, x)) is computed for each vertex by uniformly sampling 100 
points ( 𝑚 = 100 ) in the logarithmically scale over time interval [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥] with 𝑡𝑚𝑖𝑛 =
4 𝑙𝑛 10 /𝜆300 and 𝑡𝑚𝑎𝑥 = 4 𝑙𝑛 10 /𝜆2nd. 

For vocabulary construction, 𝐾-means algorithm is chosen for clustering the feature 
space. The 𝐾-means method is implemented several times with different values of  𝐾(number 
of clusters), in order to determine the optimum value for the parameter 𝐾 which is equivalent 
to the parameter 𝑣 (vocabulary size). The best retrieval results are achieved when 𝐾 is set 
to 64. Therefore, the constructed geometric vocabulary (𝒫 = {p1, … , p64} ) comprises 64 
geometric words.  

 For 3D object representation, hard version of vector quantization scheme is adopted 
since it achieves retrieval results outperforming that while using “soft” version of vector 
quantization. After vector Quantization, the feature distribution θ(x) is integrated over the 
entire 3D model yielding the final Bag-of-Features vector (F(X)) which is a 64-dimensional 
feature vector. Finally, 𝐿1 − 𝑛𝑜𝑟𝑚 (Manhattan distance) is used for comparing two different 
bags of features during the final phase of matching. 

 



Egyptian Computer Science Journal Vol. 38 No. 1 January 2014       ISSN-1110-2586 
 
 

 

 
 

-9- 

All these settings are experimentally found to give optimal retrieval performance on 
SHREC 2011 database. Matlab is used for implementing most of the code where some parts 
are written in C with Mex interface. Some other parts of the code are completely written in 
C++ using Microsoft Visual Studio 2010. All the implementation and the conducted 
experiments are completed on a laptop with 1.73 GHz Intel Core i7 CPU, 6 MB cache and 6 
GB of RAM.  

3.3. Retrieval Results 

This section is devoted for visualizing samples of our retrieval results, besides showing 
the robustness of the proposed technique against various deformation, transformations and 
noise. Some examples of retrieved 3D models returned by the proposed technique are 
visualized in Figure 1. The leftmost column of 3D models with green squares represents the 
queries belonging to different categories.  The ten following columns represent the closest ten 
retrieved 3D models for each query, ordered from left to right based on their relevance, which 
is inversely proportional to the distance from the query 3D model. It is obvious that the 
retrieved 3D models of all given queries belong to the same query’s category, indicating that 
they are relevant matches.  

 

Figure 1. Sample of 3D object retrieval results.  

It is essential to highlight that SHREC 2011 dataset contains 3D models arbitrarily 
scaled, rotated and translated. Therefore, such outstanding retrieval results indicate that the 
proposed technique is invariant to different kinds of transformations. This implies that a 
preliminary stage of pose normalization is not required before applying the proposed 
algorithm. Moreover, Figure 2 shows how the proposed descriptor is intrinsically invariant to 
different isometric deformations. The retrieval results of three query models with different 
deformations, belonging to the same category are visualized. It is obvious that the first 10 
retrieved 3D models of all the given queries are relevant matches despite of the existence of 
different classes of deformations applied on their corresponding query models.  
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In order to emphasize the robustness of the proposed technique with respect to noise, 
Figure 3 illustrates some of the retrieval results for different query models corrupted with a 
noise level equals to 0.01. Here, the noise level is analogous to the noise-to-signal ratio (NSR) 
between the variance of noise and the variance of the original signal (coordinates of the 
vertices). Green-colored models indicate irrelevant matches belonging to different category 
other than the query’s category. It is clear from the figure that our technique attains reasonable 
retrieval rate in case of corrupted queries, having insignificant number of false matches versus 
the number of correct matches confirming the stability of our technique against noise. 

 

 

Figure 3. Sample of retrieval results given corrupted models with noise level = 0.01. 

 

 

 

Figure 2. Sample of 3D object retrieval results given queries with different deformations.  
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4. Conclusion and Future Works 

In this paper, an efficient and robust approach relying on the synergy between Heat 
Kernel Signatures (HKS) and Bag of Features (BoF) paradigm has been designed for the 
purpose of 3D object retrieval. The experimental results lead to the conclusion that the 
proposed technique is quite effective for the purpose of 3D Object Retrieval, showing very 
high retrieval accuracy and descriptive power. It achieves state of the art results on SHREC 
2011 dataset; a public well known benchmark of non-rigid 3D models. The results have 
indeed confirmed that the proposed descriptor is invariant against different kinds of 
deformations and transformations on one hand and can handle 3D models under noise 
(distortion) on the other hand. Moreover, it is significant that the proposed technique is 
computationally efficient. This is certainly due to the fact that the applied innovative filtering 
technique together with the choice of compact 4

th
 dimensional HKS based feature vector for 

point feature description dramatically reduces time and space complexity required for 
applying the whole BoF model.  

In Future work, it is intended to explore in depth the following topics: 

 Adapting the proposed 3D Object Retrieval technique to handle partial matching 
problem. 

 Testing the proposed technique on domain-specific benchmarks. 

 Boosting retrieval efficiency by using parallel or distributed computing methods.  

 Exploring other applications possibly taking advantage of the proposed approach 
such as dense correspondence between non-rigid 3D models, segmentation and 
pose estimation. 

 Evaluating the performance of the proposed innovative filtering technique 
separately on a public well-known benchmark dedicated for feature detection and 
description. 

 Extending the application of the proposed 3D Object Retrieval technique on 
volumetric 3D models. 
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