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Abstract 

This paper proposes the application to the liver fibrosis stadialization of a novel training 

technique of feed-forward neural networks based on the Bayesian paradigm. Using the 

Pearson’s r correlation coefficient instead of the standard backpropagation algorithm to 

update the synaptic weights of a multi-layer perceptron, the proposed model is compared with 

traditional machine learning algorithms (standard MLP, RBF, PNN, SVM) using a real-life 

liver fibrosis dataset. The statistical comparison results indicated that the Bayesian-trained 

MLP proved to be at least as efficient as its classic competitors. 
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1. Introduction 

Hepatic fibrosis is the major indicator of progressive liver diseases and, therefore, also 

in the cases of patients with chronic hepatitis C. Liver fibrosis refers to the accumulation of 

tough, fibrous scar tissue in the liver that occurs in most types of chronic liver diseases. 

Advanced liver fibrosis results in cirrhosis, liver failure and portal hypertension, and often 

requires liver transplant. The precise stage is the most important predictor of disease 

progression and determines the need for antiviral therapy. From a medical point of view, liver 

fibrosis is evaluated semi-quantitatively according to the METAVIR F scoring system. 

Concretely, the five stages are the following: F0 – no fibrosis, F1 – portal fibrosis without 

septa, F2 –portal fibrosis and few septa, F3 – numerous septa without cirrhosis and F4 – 

cirrhosis.   

A new trend in clinical practice is based on finding a correct method for the evaluation 

of the liver fibrosis (i.e. liver fibrosis stadialization) in a non-invasive way, using all together 

biochemical tests, imaging methods, and intelligent systems provided by Computer Science. 

A modern technological approach within the computer-aided medical diagnosis (CAMD) 

process in the evaluation of liver fibrosis is the Fibroscan® (Echosens, Paris, France), a 

specially adapted ultrasound device using the principle of the one-dimension transient 

elastography (TE) for the assessment of liver stiffness [1]. The practice of Fibroscan is based 

on establishing some cut-off values of the liver stiffness for each stage of fibrosis. 

Neural networks (NNs) have become a popular tool in CAMD. The ability of NNs to 

learn from input data with or without a teacher makes them very flexible and powerful in 

medical diagnosis. Recent studies focus on the applications of different NNs algorithms to 

automatically diagnose a wide range of diseases [2-7]. 
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A decision-making process combines, from a Bayesian point of view, prior knowledge 

with information extracted from observations. The idea behind the Bayesian paradigm is that 

one can predict the class label of an object, given its attributes values, by the use of the Bayes’ 

rule. The Bayesian approach can be used to learn the weights in NNs. Some studies used 

Bayesian NNs to solve biomedical problems [8-10].  

Different from other approaches dealing with the Bayesian paradigm in conjunction 

with network models and based on previous work [11], this paper proposes a new technique 

to update the synaptic weights in a multi-layer perceptron (MLP) using the correlation 

coefficient to update the synaptic weights. Technically, the associations between object’s 

attributes and the network output, or the error function, respectively, are expressed through 

the Pearson’s r correlation coefficient. The statistical comparison results indicated that 

the Bayesian-trained MLP proved to be at least as efficient as its classic machine learning 

competitors. 

The remainder of this paper is organized in five sections. Section 2 is devoted to the 

presentation of both the design and implementation of the novel model, and the real-world 

liver fibrosis dataset for the benchmark process. Section 3 presents the experimental results of 

applying the model in terms of performance analysis and performance assessment. Section 4 

deals with discussions and conclusions. 

 

2. Materials and methods 

2.1. Discovering knowledge in data. Bayesian learning paradigm     

The training dataset {x1, x2,..., xN} contains N objects, where each object is coded as a 

vector xk = 1( ,..., ,..., ; )k k k

i p jx x x y . k

ix , i = 1, 2,..., p, represents the i-th feature of the k object, k = 

1, 2,…,N, and 
jy ,  j = 1, 2,..., q, represents the label of the decision class Cj the object xk 

belongs to. In order to use the Bayesian approach to train the neural network, the connection 

between attributes and the network error is important to be quantified. From a 

probabilistic/statistical point of view, the set representing the attributes { 1

ix , 2

ix ,..., N

ix } can be 

seen as a random sample of length N corresponding to the random variable (r.v.) 
iX . In the 

same way, one can interpret the set of labels { 1

jy , 2

jy ,..., N

jy } as a random sample of length N 

corresponding to the categorical r.v. Y. 

 

Let E(n) be the error of the network in iteration n, which can be viewed as well as a r.v. 

 

A natural way to discover the potential information within data is to assess the statistical 

dependence between the r.v.’s 
iX , i =1, 2,..., p, and the network error E(n), using measures of 

association [12]. The most simple and direct manner to estimate a (linear) relationship 

between variables is represented by the Pearson’s r correlation coefficient, given by: 
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where { },{ },1i ix y i n  , represents samples corresponding to the r.v.’s X and Y, 
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The Bayes’ theorem, stating that: 
 

1

{ | } { }
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i i
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i i
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,                                  (2) 

 

where B is an arbitrary event, and {A1, A2,…, An} is a partition of the sample space , 

can represent an alternative learning technique used to train NNs; P{Ai|B} is known as 

posterior probability, P{Ai} as prior probability, P{B|Ai} as likelihood, and P{B} as evidence. 

Note that, in classification/decision-making problems, given an object with attributes {A1, 

A2,..., An} belonging to class C, one often assumes the so-called naïve Bayes hypothesis  

stating the independence of attributes for a given class C, namely: 
 

1 2 1 2{ , ,..., | } { | } { | } { | }n nP A A A C P A C P A C P A C   .                                                         (3) 

 

The Bayesian paradigm may be used to learn the MLP weights by considering the 

concept of subjective probability instead of objective probability. As in [11], from a subjective 

Bayesianism, the probability is interpreted as a measure/degree of belief [13]. Accordingly, 

assuming that the real-valued synaptic weights belong to the interval [0, 1], the synaptic 

weights might be interpreted as probability-like measure encoding the strength of a 

connection. On the other hand, since the Pearson’s r correlation coefficient is a measure of the 

strength of association, with values ranging from -1 to +1, it might be interpreted as 

probability-like measure encoding the strength of the relationship between two r.v.’s. 
 

Let wij be the synaptic weights with corresponding r.v.’s 
ijW . Suppose that the events 

ijA  

corresponding to 
ijW  provide a partition of the “weight space” W. Under these circumstances, 

the MLP synaptic weights at iteration n  are adjusted according to the formula: 
 

,
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{ ( ) | } { }

ij ij

ij ij

ij ij

i j
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,        (4) 

 

where { }ijP A  represents the prior (probability), { ( ) | }ijP E n A  the likelihood, and P{E(n)} 

the evidence.  

2.2. The multi-layer perceptron model 

Recall the elements of a feed-forward NN (or MLP):  

 input vector x = (x1, x2,..., xp) formed by p feature components xi; 

 related output/response (multivariate) variable 
jy , j = 1, 2,..., q;  

 (synaptic) weights wij, connecting the output of neuron i to the input of neuron j, 

where neuron j lies in a layer to the right of neuron i; 

 activation non-linear function f.  

A very popular example of continuously differentiable non-linear activation function 

commonly used in MLP is the logistic sigmoid: 
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Practitioners recommend the use of normalized inputs instead of the original ones in 

order to increase the convergence speed, while an appropriate synaptic weights initialization 

allows the training algorithm to produce a good set of weights and may improve the training 

speed [14]. Therefore, normalized inputs and a standard synaptic weights initialization were 

used. A key observation in its practical use, based on the universal approximation theorem 

applied to MLP, is that a network with a single hidden layer is sufficient to uniformly 

approximate any continuous function [14], [15].  

 

The following features characterize the proposed Bayesian-driven MLP (BMLP) model: 

- One hidden layer with the number of hidden units equaling the number of decision 

classes; 

- The standard logistic sigmoid as activation function; 

- Standard initialization, normalized inputs, shuffled examples and batch training mode 

[14-15];  
- Network output computed using the winner-takes-all paradigm (the neuron with the 

largest output value gives the decision class); 

- Testing/generalization performance adequate to the problem at hand as stopping criterion. 

                                                         
BMLP algorithm 
 

1. For each decision class Cj, j = 1, 2,..., q, and for each attribute Ai, i = 1, 2,..., p, compute 

the corresponding mean attribute value j

im .  

2. For each hidden neuron HNj, j = 1, 2,..., q, compute the linear discriminant uj, given by: 
 

2
1

1
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 , j = 1, 2,..., q, k  = 1, 2,…, N.                                       (6) 

 

3. For each hidden neuron HNj, j = 1, 2,..., q, consider the non-linear activation function 

given by the sigmoid: 
 

1
( )

1 j
j u

f u
e





, j = 1, 2,..., q.                                                                                     (7) 

 

4. For each decision class Cj, j = 1, 2,..., q, encode the corresponding label yj using the  

“1-of-q” rule for nominal/categorical data, i.e., y1 ~ (0, 0,…, 1), y2 ~ (0, 0,…,1, 0),…, yq ~ 

(1, 0,…, 0). 

5. The hidden layer is seen as a discrete random variable, whose distribution is characterized 

by a probability mass function g, which values are given by: 
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6. For each input item xk of the training set TS, compute the corresponding error function as 

follows: 
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7. Build the error array E = (error1, error2,…, errorN), using the error at each step.  

8. Update the synaptic weights according to the formula: 
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, i = 1, 2,..., p, j = 1, 2,..., q,            (10) 

 

      where *

ijw denotes the updated synaptic weight. 

Repeat steps 2-8 for a certain number of epochs until the stopping criterion is satisfied. 

Return the synaptic weights *

ijw . 

2.3. Liver fibrosis dataset 

The proposed BMLP model has been applied on a real-world medical dataset related to 

liver fibrosis described below. The dataset consists of 743 consecutive patients with chronic 

HCV infection, examined at the 3
rd

 Medical Clinic, University of Medicine and Pharmacy 

“Iuliu Hatieganu”, Cluj-Napoca, Romania, between May 2007 and August 2008. All of them 

had positive HCV-RNA in their serum and underwent percutaneous liver biopsy (LB) for 

grading and staging the diseases. All patients were referred to liver stiffness measurement 

(LSM) 1 day prior to LB. Besides the epidemiological, anthropometric and clinical 

parameters, the biological parameters were determined for all patients on the same day as 

LSM. Table 1 presents an example of the parameters (25 classification attributes) and the 

diagnosis classes for liver fibrosis (Metavir F), taken into consideration in our study for five 

patients (P1-P5), one for each decision class. 

Table 1. Example of medical features for five patients 

Features P1 P2 P3 P4 P5 

Metavir F (stages) 0 1 2 3 4 

Stiffness (Fibroscan specific output) 3.2 5.3 6 15.5 27 

Sex (M/F) 1 2 1 2 1 

Age (years) 33 55 31 50 46 

BMI (body mass index) (kg/cm) 26.2 24.3 33.95 27.34 30.12 

Glycemia (mg/dl) 89.3 110 96 118 84 

Triglycerides (mg/dl) 208 54 154 54 93 

Cholesterol (mg/dl) 263 133 198 143 152 

High density lipoprotein cholesterol (mg/dl) 56 69 36 40 21 

Aspartate aminotransferase (U/L) 20 62 46 62 105 

Alanin aminotransferase (U/L) 59 61 117 76 167 

Gama glutamyl transpeptidase (U/L) 75 19 41 40 187 

Total bilirubin (mg/dl) 0.51 1.19 0.93 0.54 0.97 

Alkaline phosphatase (U/L) 174 283 248 258 245 

Prothrombin index (%) 108 102 107.3 97.1 42.7 

Tqs (tocopheryl quinones) (mg/dl) 14.5 15.2 15 15.7 25.4 
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Follow Table 1. Example of medical features for five patients 

Features P1 P2 P3 P4 P5 

INR (prothrombin time ratio) (seconds) 0.87 0.98 0.95 1.02 1.85 

Prolonged activated partial thromboplastin time  

(seconds) 

27.9 30.9 28.4 29 30.9 

Haematids (erytthrocytes)  (mii/µl) 5.11 4.91 4.81 4.53 5.11 

Hemoglobin (g/dl) 16.4 14.5 14.9 14.6 15.2 

Hematocrit (%) 46.1 40.9 42.6 41.3 45.2 

Medium eritrocity volume (fL) 91.1 83.2 88.6 91.1 88.5 

Avg. eritrocitary hemoglobin (pg/cell) 32 29.5 31 32.4 29.7 

Avg. concetration of hemoglobinin a red blood cell 

(g/dl) 

35.2 35.5 35 35.5 33.5 

Thrombocytes (mii/µl) 208 198 174 161 106 

Sideraemia (mg/dl) 134 70 175.7 79.4 103 

2.4. Statistical assessment 

The effectiveness of the Bayesian-driven MLP algorithm in comparison with standard 

NN models, such as the classical MLP trained with the BP algorithm (MLPBP), the radial-

basis function (RBF), the probabilistic neural network (PNN), and the support vector machine 

(SVM), was assessed by the 10-fold cross-validation. Technically, the testing classification 

accuracy for each model has been computed 10 times, each time leaving out one of the sub-

samples and using that sub-sample as a test sample for cross-validation. In this way, each sub-

sample is being used nine times as training sample and just once as testing sample. The 

model’s correct classification rates, computed as mentioned above, were averaged to give the 

10-fold estimate of the classification accuracy. This procedure has been repeated 10 times to 

complete a cross-validation cycle, consisting of the 10 runs of each model. This statistical 

procedure used for relative small databases is detailed in [16]. In the concrete case of the liver 

fibrosis dataset, around 669 cases are considered as learning samples, while the rest of 74 as 

testing samples in each of the ten cross-validation cycles. 

The following rule to compare the algorithms was used: each algorithm has been 

executed in 100 independent computer runs (each model has been independently run 100 

times in a complete cross-validation cycle), providing a statistical power greater than 95%, 

with type I error = 0.05 for the statistical comparison tests. The average accuracy obtained 

over the 100 complete cross-validation cycles represented the average decision performance 

of each competitor, subsequently used for the statistical comparison. 

The statistical analysis assessing the effectiveness of BMLP in comparison with the 

other neural computing techniques involved two statistical tests applied to the independent 

samples of computer runs: 

 The parametric t-test for independent samples; 

 The difference between two proportions (DBTP) - two-sided test (z-value). 

Note. Authors have made a Java implementation of the BMLP algorithm. It is worth 

mentioning that an important characteristic of the Java implementation is that all data 

about patients collected by physicians can, at any time, be added, modified or deleted, 

with no change in the source of the program whatsoever, because of JDBC (Java 

Database Connectivity). 
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3. Results 

The results of the experiments on the liver fibrosis dataset, aiming to provide the 

effectiveness of this novel approach in liver fibrosis stadialization, are presented in Table 2 in 

terms of diagnosis accuracy and the corresponding standard deviation (SD), averaged over 

100 computer runs of a complete cross-validation cycle. 

Table 2. BMLP diagnosis performance averaged over 100 computer runs (mean/SD) 

Mean accuracy (%) SD (%) 

61.97 4.10 

 

Both the overall and per-class classification statistics for a sample corresponding to an 

average computer running are displayed in Table 3. Thus,  we can establish: (a) the total 

number of cases in each class, (b) cases of each class that were correctly (and incorrectly) 

classified, and (c) cases of that class which could not be classified at all (unknown cases). The 

observed class is displayed at the top of the table, and the predicted class down the side. Each 

cell contains a number showing how many cases that were actually of the given observed 

class were assigned by the model to the given predicted class. 

Table 3. Overall and per-class statistics 

Class (Metavir F) 0 1 2 3 4 

0 0 0 0 0 0 

1 27 180 118 30 16 

2 2 46 47 22 12 

3 0 1 1 3 1 

4 0 5 11 31 190 
 

 Table 3 provides a good insight regarding the difficulties that must face a classifier 

when applying on such a medical problem. As we can easily see, there is a quite real trend of 

misclassification regarding the intermediate stages (F2, F3), but concerning the early and the 

final stages (F1-beginning of the disease, F4-cirrhosis), which are the most important, the 

diagnosis is very promising. 
 

Several standard neural networks, such as: MLPBP, RBF, PNN, and SVM [16], had 

been tested against the liver fibrosis dataset. To evaluate the performance of the novel 

approach, we compared it with the performance of these advanced models applied on the 

same dataset, described and reported in literature [17-19]. Their performance, displayed in 

Table 4, cannot be directly compared for all cases with the ones obtained by BMLP since the 

10-fold cross-validation has not always been used.  

Table 4. Statistical comparison of the diagnosis accuracy 

Classifier Mean/SD performance (%) 

BMLP 61.97/4.10 

MLPBP 60.81/2.26 

RBF 55.35/3.45 

PNN 53.64/3.11 

SVM 61.33/NS 

 



Egyptian Computer Science Journal Vol. 38 No.3  September 2014       ISSN-1110-2586 
 

 

 
 

-40- 
 

According to this result, the novel algorithm provided at least the same performance 

compared with other NNs approaches. Moreover, it is worth to mention that the 

computational effort was lower compared to the standard MLP trained with the BP algorithm. 

During the multiple computer runs, one can estimate that the average computing speed has 

increased by about 25% due to the simplified learning technique. 

 

To quantify statistically the magnitude of the contrast between the performance of the 

novel approach and the performance of its competitors, both the t-test for independent 

samples and the difference between two proportions (DBTP) - two-sided test (z-value) have 

been considered. The results of the two statistical comparison tests using 100 random trials 

are displayed in Table 5. 

Table 5. Benchmark results: t-test and DBTP test 

Competitors t-test (p-level) DBTP (p-level) 

BMLP vs. MLPBP 2.47/0.014 0.86 

BMLP vs. RBF 12.31/0.00 0.34 

B-MLP vs. PNN 16.32/0.00 0.23 

B-MLP vs. SVM - 0.92 
 

The results of the two tests, though different, are consistent with the raw information 

from Table 4, confirming statistically the contrast. Basically, depending on the paradigm of 

each test, while the t-test for independent samples highlights a significant statistical difference 

between BMLP and the other NNs, the test concerning the difference between two 

proportions reveals no statistical significant difference.  

4. Discussion and conclusions 

This paper firstly deals with a novel learning technique for MLP, based on the Bayesian 

paradigm and replacing the standard BP algorithm. Secondly, the novel approach has been 

assessed in real-world application regarding the liver fibrosis stadialization. 

Different from other approaches dealing with the Bayesian paradigm, the paper 

proposes a novel technique in the updating process, the synaptic weights being considered, 

from a subjective Bayesianism, as probabilities expressing the association between attributes 

and the error function through the Pearson’s r correlation coefficient. 

For the performance assessment, both the t-test for independent samples and the 

difference between two proportions (DBTP) - two-sided test (z-value) have been considered.  

The idea to use the Bayesian paradigm to train a MLP is straightforward and 

advantageous in several aspects: 

 The Bayesian approach for updating the synaptic weights is transparently 

presented. 

 The corresponding algorithm is easy to understand and implement. 

 The model is potentially adaptable to a wide variety of medical decision problems. 
 

Finally, note that the performance on BMLP used for liver fibrosis stadialization 

equaled or exceeded the results reported in literature. 
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Future research may lie in: 
 

 The use of alternative approaches to the Pearson’s r correlation coefficient. 

 The use of alternative non-linear activation functions. 
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