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Abstract 
  

The task of mining association rules consists of two main steps. The first involves 

finding the set of all frequent itemsets. The second step involves testing and generating all 

high confidence rules among itemsets. This paper presents a comparative study of association 

rules algorithms on large databases. Five algorithms have been chosen for this comparative 

study. The Apriori, Close, FP-growth, Top-k rules, and TNR algorithms have been chosen 

because these are the most commonly used in the literature. Moreover, these algorithms differ 

in the number of dataset scanning which affects the performance. In addition, some of these 

algorithms generate redundant association rules while others don’t. All these algorithms are 

implemented and compared on different datasets. Experimental results show that the FP-

Growth algorithm has the best performance, while the TNR algorithm has the best generated 

non-redundant association rules, and the Top-k rules algorithm has the best performance when 

the minimum confidence is high. 
 

Keywords: Data mining; Association rules; Apriori algorithm; FP-Growth algorithm; Close 

algorithm; Top-k rules algorithm; TNR algorithms. 

 
 

1. Introduction 
 

Since its introduction, association rule mining [1], has become one of the core data 

mining tasks and has attracted tremendous interest among data mining researchers and 

practitioners. It has an elegantly simple problem statement; that is, to find the set of all subsets 

of items (called itemsets) that frequently occur in many database records or transactions, and 

to extract the rules telling us how a subset of items influences the presence of another subset. 

There are many algorithms to generate association rules such as AIS [1], Apriori [2], Close 

[3], FP-Growth [4], Top-k rules [5], TNR [6], etc. The first algorithm for mining association 

rules was the AIS algorithm.  Shortly after that, the algorithm was improved and renamed 

Apriori.  The Apriori  algorithm  is the  most  classical  and  important  algorithm  for  mining, 

but it requires  multiple  passes  over  the  database. The Apriori algorithm was improved for 

reducing passes, shrinking candidate items, and facilitating support counting of candidates. 

Improving the performances of Apriori algorithm was made by the introduction of a novel, 

compact data structure, referred to as frequent pattern tree, or FP-tree, and the associated 

mining algorithm, FP-growth. Another two algorithms for the efficient generating of large 

frequent candidate sets are Matrix and BCAR algorithms. The Matrix algorithm was proposed 

by Yubo and Tingzhu [7]. The Matrix algorithm generates a matrix with entries 1 or 0 by 

passing over the database only once, and then the frequent candidate sets are obtained from 

the resulting matrix. Finally, association rules are mined from the frequent candidate sets. The 

Boolean algebra and compression technique for association rules (BCAR) [8] algorithm was 

proposed by S. Anekritmongkol et al. which it compress database and reduce the data of each 

candidate. 
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A serious problem in association rule discovery is that the set of association rules can 

grow to be unwieldy as the number of transactions increases, especially if the support and 

confidence thresholds are small. As the number of frequent itemsets increases, the number of 

rules presented to the user typically increases proportionately. Many of these rules may be 

redundant. To overcome the “too many frequent itemsets” disadvantage, the closed itemset 

concept was proposed [9]. The set of closed itemsets is said to be closed if it has no superset 

with the same frequency (support). Several algorithms have been proposed in the literature, 

including A-Close, FP-Close [10], B-Miner & C-Miner [11], etc.   

 

Ashrafi et al. [12] presented several methods to eliminate redundant rules and to 

produce a small number of rules from any given frequent or frequent closed itemsets 

generated. Ashrafi et al. [13] present additional redundant rule elimination methods that first 

identify the rules that have similar meaning and then eliminate those rules. Furthermore, their 

methods eliminate redundant rules in such a way that they never drop any higher confidence 

or interesting rules from the resultant rule set. 

 

The rest of the paper is organized as follows:  Section 2 describes the association 

mining task and presents the main aspects of Apriori, FP-growth, Close, Top-k rules and TNR 

algorithms; Section 3 shows measuring efficiency of the algorithms; and the paper is 

concluded in Section 4.  
 

2. Association rules 

Association rule mining is to find association rules that satisfy the predefined minimum 

support and confidence from a given database. The problem is usually decomposed into two 

sub problems. One is to find those itemsets whose occurrences exceed a predefined threshold 

in the database called support; those itemsets are called frequent or large itemsets. The second 

problem is to generate association rules from those large itemsets with the constraints of 

minimal confidence. Support and confidence are important measures for association rules. 

Association  rule  mining  is   one  of  the  most important  technique  of  the  data  mining. Its 

aim is to extract interesting correlations, frequent patterns and association among set of items 

in the transaction database. [14] 

 

The problem of discovering association rules was first introduced, and then an 

algorithm called AIS (Artificial Immune System) was proposed for mining association rules.  

For the last few years, many algorithms for rule mining have been proposed. Most of them 

follow the representative approach of the Apriori algorithm. Various researches have been 

done to improve the performance and scalability of Apriori. 
 

2.1  Apriori Algorithm  

In the Apriori algorithm, the items are sorted in lexicographic order. Frequent itemsets 

are computed iteratively, in ascending order of their size. The process takes k iterations, 

where k is the size of the largest frequent itemsets. For each iteration 𝑖 ≤ k, the database is 

scanned once and all frequent itemsets of size 𝑖 are computed. The first iteration computes the 

set  L1 of frequent 1-itemsets. A subsequent iteration 𝑖 consists of two phases. First, a set  Ci 

of candidate 𝑖-itemsets is created by joining the frequent (𝑖 − 1)-itemsets in  Li−1 found in the 

previous iteration. This phase is realized by the Apriori-gen function. Then the database is 
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scanned for determining the support of candidates in  Ci and frequent 𝑖-itemsets are extracted 

from the candidates. This process is repeated until no more candidates can be generated. [2] 

Definition 1: (Association rule on frequent itemsets) 

Rule X Y is an association rule on frequent itemsets if both X and XUY are frequent 

itemsets. The complete set of association rules on frequent itemsets can be generated by an 

adapted version of Apriori rule generation algorithm [3].  
 

2.2 FP-Growth Algorithm [15] 

The FP-Growth algorithm, proposed by Jiawei Han, et al., is an efficient and scalable 

method for mining the complete set of frequent patterns by pattern fragment growth, using an 

extended prefix-tree structure for storing compressed and crucial information about frequent 

patterns named frequent-pattern tree (FP-tree). The FP-Growth is an alternative way to find 

frequent itemsets without using candidate generation, thus improving performance. In their 

study, they proved that their method outperforms other popular methods for mining frequent 

patterns; e.g. the Apriori, Tree Projection [16], PRICES [17] algorithms. In another paper 

[15], some optimizations are proposed to speed up FP-growth so that a single path FP-tree has 

been further developed for performance improvements.  

 In the following we present basic steps for FP-Growth algorithm: 

 The algorithm avoids repeated database scans so it can scan the database in only two 

scans. 

 Scan the database to find all frequent itemsets and order them in descending frequent 

order. 

 Scan the database again to construct FP-tree according to FP-Tree construction. The 

FP-Tree is adequate for mining frequent patterns and can replace the database. 

 FP-Growth starts scanning the tree to compute the support of k-itemset and to examine 

items under form the conditional pattern base. 

 Generate association rules by adapted version of Apriori rule generation algorithm. 
 

2.3 Close Algorithm [3] 

In 1993, Agrawal et al. developed a method for mining traditional association rules 

(TAR) [2]. Following that, the Apriori algorithm was proposed.  Because TAR contains a 

number of redundancies, Nicolas Pasquier, et al. proposed the Close algorithm to mine 

frequent closed itemsets and added an adapted version of Apriori rules algorithm to generate 

association rules from frequent closed itemsets. Additionally, the number of frequent closed 

itemsets is often much smaller than the number of frequent itemsets, so the time for 

generating rules from frequent closed itemsets is reduced significantly.  

Nicolas Pasquier, et al. described the concept of frequent closed itemsets and added this 

concept to the Apriori algorithm in order to find frequent closed itemsets. They also generated 

valid association rules by an adapted version of Apriori rule generation algorithm. 

Definition 2:  An itemset X is closed in data set S if there exists no proper super-itemset 

Y such that Y has the same support count as X in S. 

Definition 3: A closed itemset X is a frequent closed itemset if and only if its support is 

no less than the given minimum support threshold. 
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The advantages of using closed frequent itemset mining are (a) the number of frequent 

closed itemsets is less when compared to number of frequent itemsets; and (b) all information 

of frequent itemsets can be derived from closed frequent itemsets. The advantage of Close 

algorithm reduces frequent itemsets and association rules so that it can find frequent closed 

itemsets and generate association rules from frequent closed itemsets.  
 

2.4 Top-k rules algorithm [5]  

Top-k Rules algorithm was proposed by Philippe Fournier-Viger, et al. It is used to 

mine the Top-k association rules, where k is the number of association rules to be found and 

is set by the user. Mining the Top-k association rules has two challenges. First, Top-k rules 

cannot rely on minimum support to prune the search space, but they could be modified to 

mine frequent itemsets with minimum support = 1 to ensure that all top-k rules can be 

generated in the generating rules step. Second, top-k association rules mining algorithm 

cannot use the two steps process to mine association rules [1], but they would have to be 

modified to be able to find the top-k rules by generating rules and keeping top-k rules. They 

defined the efficient approach for generating association rules as “rules expansions” that does 

not rely on the two steps process to mine association rules [1]. The Top-k rules algorithm is 

an advantageous alternative to classical association rule mining algorithms for users who want 

to control the number of association rules generated. Generally, the Top-k rules algorithm 

contains the following steps:  

 Scan database once to calculate tids({c}) for each single item c in the database. 

 The algorithm generates all rules by joining pair of items i, j, where i and j each have 

at least minimum support. The support of itemset (i, j) are calculated by intersect 

tids(i) and tids(j). If support of pairs items is not satisfy minimum support, the rule 

cannot be created with i, j. The rule is valid if the rule satisfies the minimum support 

and minimum confidence. The support of rules {i} → {j} and {j} → {i} are calculate 

by dividing the support of itemset (i,j) by number of transactions. The confidence of 

{i} → {j} are calculated by dividing support of itemset (i,j) by support of itemset(i).    

 All valid rules are added in the list L. Also all the rules are added to the set R where 

each support of rules have at least minimum support. 

 When a new valid rule is found, the rule adds to L. Then, if the list L contains more 

than k rules and support of rule is greater than minimum support, the rules that are 

equal minimum support can be removed until only k rules are kept. Finally, the 

minimum support is changed to the lowest of support the rule in L. 

 The set R start loop to expand all rules by selected rule with the highest support until 

there is no more rules in R. For each rule, flag expandLR indicates if the rule should 

be left and right expanded or just left expand. 
 

2.5  TNR Algorithm [6] 

Top-k non-redundant association rules (TNR) algorithm is combined the idea of mining a 

set of non-redundant rules with the idea of Top-k association rules. The TNR algorithm is 

based on “rule expansion” and two strategies to avoid generating redundant rules. It is similar 

to the Top-k rules algorithm, but it added two strategies when save rules on L. After the 

search procedure is modified, the every generated rule ra is added to L only if sup (ra) ≥ 
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minsupp and ra is not redundant with respect to another rule. There are two strategies to 

determine ra redundant as follows: 

Strategy 1:                                                                                                                         

For each rule ra that generated such that sup (ra) ≥ minsupp, if ∃rb∈L| sup(rb)=sup(ra) 

∧conf(rb)=conf(ra) ∧conf(rb) ∧left(rb) ⊆ left(ra) ∧right(ra)⊆ right(rb) and ra is redundant 

with respect rb, then rais not added to L. ra otherwise, is added to L.   

Strategy 2: 

For each rule rb that generated such that sup (rb) ≥ minsupp, if ∃ ra∈L| sup(rb)=sup(ra) 

∧conf(rb)=conf(ra) ∧conf(rb) ∧left(ra) ⊆ left(rb) ∧right(rb)⊆ right(ra) and ra is redundant 

with respect rb, then rais removed from L. if remove the rule ra , it may have forced variable. 

If that happened, then the algorithm may have missed some rules that have a support lower 

than ra but are non-redundant. To solve this problem they added a parameter that they named 

∆ that increases by the number of rules k necessary to raise the internal minimum support 

variable.  

3. Measuring  Efficiency of the Algorithms 

In this section, we compare previously described algorithms in the previous section and 

discus observed differences in performance behavior.  
 

3.1 Experiment  Results 
 

The Apriori, FP-Growth, Close, Top-k rules and TNR algorithms were implemented in 

Java and tested on several datasets [18]. Table (1) summarizes the datasets characteristics. 

The platform’s specifications used for this test were: Intel core i3 (3*2.40 GHz), 4GBs RAM 

memory, Windows 8.  In order to obtain more realistic results, a Microsoft SQL 2008 Server 

was used. To study the performance, four datasets has been used to support factors between 

40% and 90%, and also confidence factor between 40% and 90%. Taking into account these 

considerations, the datasets depend on the number of items in a transaction, number of items 

in a frequent itemset, etc.  

 

Table (1) Datasets’ Characteristics 

Datasets Number of 

Transactions 

Number of 

distinct Items 

Mushroom 8124 119 

Pumsb 49046 2097 

T10I4D100K 100000 870 

Retail 88162 16470 
 

Some of the results of the comparison between the Apriori, FP-growth, Close, Top-k 

rules, and TNR algorithms for minimum support and minimum confidence factors between 

40% and 90% and for different datasets are presented in Tables 2-13. 
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Table (2) Number Rules of Five Algorithms on Mushroom 

 

Table (3) Execute Time of Five Algorithms on Mushroom. 

MinSup 

&MinConf 

Execute time of 

Apriori (ms) 

Execute time of 

FP-Growth (ms) 

Execute time 

of Close (ms) 

Execute time of 

Top-k rules (ms) 

Execute time of 

TNR (ms) 

40% 1442189 194537 1437958 1876629 14322037 

50% 1315282 193373 1058754 477997 2332565 

60% 1265774 192328 1054246 224818 676054 

70% 1096240 192646 1055215 194669 575561 

80% 863433 191910 867130 146355 352596 

90% 755820 192119 677265 104866 127540 

 

Table (4) Maximum Memory of Five Algorithms on Mushroom 

MinSup 

&MinConf 

Maximum 

memory usage 

of Apriori (mb) 

Maximum memory 

usage of FP-Growth 

(mb) 

Maximum memory 

usage of Close (mb) 

Maximum 

memory usage 

of Top-k rules 

(mb) 

Maximum 

memory usage of 

TNR (mb) 

40% 17.08866 14.21042 17 84.74023 440.4 

50% 18.6 15.24411 16.88 27.28 56.2315 

60% 13.2 11.61 16.2 13.8 18.8 

70% 16.4 18.0332 13.6 12.644 16.9 

80% 10.6 12.601 10.8 11.15 13.4 

90% 16.5 16.9 16.6 9.75 9.6 

 

Table (5) Number Rules of the Five Algorithms on Retail 

MinSup 

&MinConf 

Frequent itemsets 

by  Apriori and FP-

Growth algorithms 

Frequent closed 

itemsets by 

Close algorithm 

Number of 

Rules by Close 

algorithm 

Number of Rules by 

Apriori, FP-Growth 

and Top-k rules 

algorithms 

Number of Rules 

by TNR algorithm 

40% 95 16 316 1024 1003 

50% 71 13 210 640 601 

60% 35 7 70 190 185 

70% 31 6 64 180 174 

80% 11 3 14 22 22 

90% 7 2 8 12 12 

 

 

 

 

MinSup 

&MinConf 

Frequent itemsets 

by  Apriori  and FP-

Growth algorithms 

Frequent closed 

itemsets by 

Close algorithm 

Number of 

Rules by Close 

algorithm 

Number of Rules by 

Apriori, FP-Growth 

and Top-k rules 

algorithms 

Number of Rules 

by TNR algorithm 

40% 565 140 2654 7020 6546 

50% 153 45 516 1148 1113 

60% 51 19 136 266 253 

70% 31 12 90 180 170 

80% 23 10 54 88 82 

90% 9 5 12 14 14 
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Table (6) Execute Time of Five Algorithms on Retail. 

MinSup 

&MinConf 

Execute time of 

Apriori (ms) 

Execute time of 

FP-Growth (ms) 

Execute time 

of Close (ms) 

Execute time of 

Top-k rules (ms) 

Execute time of 

TNR (ms) 

40% 93140175 14312046 93087818 64094737 75028720 

50% 93125614 14301127 93003989 64011955 75023807 

60% 78959334 14253814 78899075 46929071 57717263 

70% 78896862 14224032 78808594 46499056 57609598 

80% 50149892 14219850 50140615 38517208 49518278 

90% 50145794 14208197 50140068 33519667 43529381 

 

Table (7) Maximum Memory of Five Algorithms on Retail. 

MinSup 

&MinConf 

Maximum 

memory usage 

of Apriori (mb) 

Maximum memory 

usage of FP-Growth 

(mb) 

Maximum memory 

usage of Close (mb) 

Maximum 

memory usage 

of Top-k rules 

(mb) 

Maximum 

memory usage of 

TNR (mb) 

40% 14.16 16.66 13.37 303.9 414.23 

50% 13.95 16.95 13.21 238.7108 381.514 

60% 15.11 16.83 14.83 213.8 257.5365 

70% 13.11 15.41 12.02 212.2 216.9 

80% 17.7 16.7 16.7 188.32 191.6 

90% 16.6 14.3 12.1 177.302 179.803 

 

Table (8) Number Rules of Five Algorithms on T10I4D100K 

MInSup 

&MinConf 

Frequent itemsets 

by  Apriori and FP-

Growth algorithms 

Frequent closed 

itemsets by 

Close algorithm 

Number of 

Rules by Close 

algorithm 

Number of Rules 

by Apriori, FP-

Growth and Top-k 

rules algorithms 

Number of Rules 

by TNR algorithm 

40% 127 49 784 1932 1902 

50% 127 49 784 1932 1902 

60% 63 28 318 602 585 

70% 63 28 318 602 602 

80% 31 16 130 180 180 

90% 9 5 8 8 8 

 

Table (9) Execute Time of Five Algorithms on T10I4D100K. 

MinSup 

&MinConf 

Execute time of 

Apriori (ms) 

Execute time of 

FP-Growth (ms) 

Execute time 

of Close (ms) 

Execute time of 

Top-k rules (ms) 

Execute time of 

TNR (ms) 

40% 80724201 10682009 80704601 40795514 45985017 

50% 80743111 10681000 80713111 40779798 45899703 

60% 69845174 10718988 69841174 32299910 39512793 

70% 69944142 10712970 69743172 32374701 39499887 

80% 59136272 10645311 59126373 26875612 30987690 

90% 26749101 10642572 26658092 9423634 13569837 
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Table (10) Maximum Memory of Five Algorithms on T10I4D100K. 

MinSup 

&MinConf 

Maximum 

memory 

usage of 

Apriori (mb) 

Maximum 

memory usage of 

FP-Growth (mb) 

Maximum 

memory usage of 

Close (mb) 

Maximum 

memory usage 

of Top-k rules 

(mb) 

Maximum 

memory usage 

of TNR (mb) 

40% 15.75 16.95 15.86 402.5 489.8 

50% 16.2 17.1 16.1 402.7 489.9 

60% 14.03312 15.83312 14.211 143.8301 147.9 

70% 14.92 15.92 14.73 144.534 156.35 

80% 11.813 13.0111 12.1 112.92 115.92 

90% 16.451 13.6233 15.501 47.835 50.01 

 

Table (11) Number Rules of Five Algorithms on Pumsb. 
MinSup 

&MinConf 

Frequent itemsets 

by  Apriori and FP-

Growth algorithms 

Frequent closed 

itemsets by 

Close algorithm 

Number of 

Rules by Close 

algorithm 

Number of Rules 

by Apriori, FP-

Growth and Top-k 

rules algorithms 

Number of Rules 

by TNR algorithm 

70% 356 79 1222 4546 4430 

90% 7 3 4 4 4 

 

Table (12) Execute Time of Five Algorithms on Pumsb. 

MinSup 

&MinConf 

Execute time of 

Apriori (ms) 

Execute time of 

FP-Growth (ms) 

Execute time 

of Close (ms) 

Execute time of 

Top-k rules (ms) 

Execute time of 

TNR (ms) 

70% 70156171 9474078 68967495 91332058 112697223 

90% 47195453 9184603 46987351 6092669 9467830 

 

Table (13) Maximum Memory of Five Algorithms on Pumsb. 

MinSup 

&MinConf 

Maximum 

memory usage 

of Apriori (mb) 

Maximum memory 

usage of FP-Growth 

(mb) 

Maximum memory 

usage of Close (mb) 

Maximum 

memory usage of 

Top-k rules (mb) 

Maximum 

memory usage 

of TNR (mb) 

70% 14.027 18.205 14.05 903.84 989.87 

90% 9.627 16.94 14 20.03223 189.1 

 

3.2  Discussion 
 

Tables 2, 5, 8 and 11 show the number of rules generated by algorithms, while tables (3, 

6, 9 and 12) and Figure (1, 3, 5 and 7) show the execution times for the five algorithms. The 

best performance of algorithms is FP-growth algorithm when the datasets contain small or 

large frequent itemsets. Also Top-k rules and TNR algorithms are better than Apriori and 

Close algorithms when the datasets have small frequent itemsets as in Retail and 

T10I4D100K. For high minimum support, minimum confidence of 90%, and datasets of 

Mushroom and Pumsb, the Top-k rules algorithm has the best performance. 
  
Tables (4, 7, 10 and 13) and Figures (2, 4, 6 and 8) show the maximum memory usage 

of five algorithms on four datasets. The Top-k rules and TNR algorithms have the highest 

memory usage, but Apriroi and Close algorithms have the lowest memory usage. 
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Figure (1) Execution Time of Five Algorithms on Mushroom 

 

 

 
 

Figure (2) Maximum Memory Usage (MB) of Five Algorithms on Mushroom 

 

 

 
 

Figure (3) Execution Time of Five Algorithms on T10I4100K 
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Figure (4) Maximum Memory Usage (MB) of Five Algorithms on T10I4100K 

 

 

 
 

Figure (5) Execution Time of Five Algorithms on Retail. 

 

 

 
 

Figure (6) Maximum Memory Usage (MB) of Five Algorithms on Retail 
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Figure (7) Execution Time of Five Algorithms on Pumsb. 
 

 

 
 

Figure (8) Maximum Memory Usage (MB) of Five Algorithms on Pumsb 

 
 

4. Conclusion and Future Work 

  Association rules can be used to find the link between different products (items) in the 

transaction database, through which the buying behaviour patterns of customers can be 

discovered. This paper measured the efficiency of association rules algorithms on large 

datasets because the size of frequent itemsets differ depending on the datasets. The best 

performance is the FP-growth algorithm on different datasets, while the TNR algorithm has 

the best generated non-redundant association rules. The Top-k rules algorithm has the best 
performance on different datasets when the minimum support and minimum confidence are high. 

In future, we will develop efficient algorithms for the fast mining of non-redundant 

association rules to be generated by the combination of FP-growth and TNR algorithms.  

Subsequently, efficient algorithms for mining frequent closed itemsets from large databases 

will be discussed. 
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