
Egyptian Computer Science Journal Vol. 38 No.3 September 2014 ISSN-1110-2586

- 51 -

A Comparative Study of Association Rules Algorithms on Large Databases

Ahmed Alhamzi, Mona Nasr, Shaimaa Salama
Faculty of Computers and Information, Helwan University, Cairo, Egypt

ahmed_alhamzi@yahoo.com, m.nasr@helwan.edu.eg, chaimaa_salama@yahoo.com

Abstract

The task of mining association rules consists of two main steps. The first involves

finding the set of all frequent itemsets. The second step involves testing and generating all

high confidence rules among itemsets. This paper presents a comparative study of association

rules algorithms on large databases. Five algorithms have been chosen for this comparative

study. The Apriori, Close, FP-growth, Top-k rules, and TNR algorithms have been chosen

because these are the most commonly used in the literature. Moreover, these algorithms differ

in the number of dataset scanning which affects the performance. In addition, some of these

algorithms generate redundant association rules while others don’t. All these algorithms are

implemented and compared on different datasets. Experimental results show that the FP-

Growth algorithm has the best performance, while the TNR algorithm has the best generated

non-redundant association rules, and the Top-k rules algorithm has the best performance when

the minimum confidence is high.

Keywords: Data mining; Association rules; Apriori algorithm; FP-Growth algorithm; Close

algorithm; Top-k rules algorithm; TNR algorithms.

1. Introduction

Since its introduction, association rule mining [1], has become one of the core data

mining tasks and has attracted tremendous interest among data mining researchers and

practitioners. It has an elegantly simple problem statement; that is, to find the set of all subsets

of items (called itemsets) that frequently occur in many database records or transactions, and

to extract the rules telling us how a subset of items influences the presence of another subset.

There are many algorithms to generate association rules such as AIS [1], Apriori [2], Close

[3], FP-Growth [4], Top-k rules [5], TNR [6], etc. The first algorithm for mining association

rules was the AIS algorithm. Shortly after that, the algorithm was improved and renamed

Apriori. The Apriori algorithm is the most classical and important algorithm for mining,

but it requires multiple passes over the database. The Apriori algorithm was improved for

reducing passes, shrinking candidate items, and facilitating support counting of candidates.

Improving the performances of Apriori algorithm was made by the introduction of a novel,

compact data structure, referred to as frequent pattern tree, or FP-tree, and the associated

mining algorithm, FP-growth. Another two algorithms for the efficient generating of large

frequent candidate sets are Matrix and BCAR algorithms. The Matrix algorithm was proposed

by Yubo and Tingzhu [7]. The Matrix algorithm generates a matrix with entries 1 or 0 by

passing over the database only once, and then the frequent candidate sets are obtained from

the resulting matrix. Finally, association rules are mined from the frequent candidate sets. The

Boolean algebra and compression technique for association rules (BCAR) [8] algorithm was

proposed by S. Anekritmongkol et al. which it compress database and reduce the data of each

candidate.

mailto:ahmed_alhamzi@yahoo.com
mailto:m.nasr@helwan.edu.eg
mailto:chaimaa_salama@yahoo.com

Egyptian Computer Science Journal Vol. 38 No.3 September 2014 ISSN-1110-2586

- 52 -

A serious problem in association rule discovery is that the set of association rules can

grow to be unwieldy as the number of transactions increases, especially if the support and

confidence thresholds are small. As the number of frequent itemsets increases, the number of

rules presented to the user typically increases proportionately. Many of these rules may be

redundant. To overcome the “too many frequent itemsets” disadvantage, the closed itemset

concept was proposed [9]. The set of closed itemsets is said to be closed if it has no superset

with the same frequency (support). Several algorithms have been proposed in the literature,

including A-Close, FP-Close [10], B-Miner & C-Miner [11], etc.

Ashrafi et al. [12] presented several methods to eliminate redundant rules and to

produce a small number of rules from any given frequent or frequent closed itemsets

generated. Ashrafi et al. [13] present additional redundant rule elimination methods that first

identify the rules that have similar meaning and then eliminate those rules. Furthermore, their

methods eliminate redundant rules in such a way that they never drop any higher confidence

or interesting rules from the resultant rule set.

The rest of the paper is organized as follows: Section 2 describes the association

mining task and presents the main aspects of Apriori, FP-growth, Close, Top-k rules and TNR

algorithms; Section 3 shows measuring efficiency of the algorithms; and the paper is

concluded in Section 4.

2. Association rules

Association rule mining is to find association rules that satisfy the predefined minimum

support and confidence from a given database. The problem is usually decomposed into two

sub problems. One is to find those itemsets whose occurrences exceed a predefined threshold

in the database called support; those itemsets are called frequent or large itemsets. The second

problem is to generate association rules from those large itemsets with the constraints of

minimal confidence. Support and confidence are important measures for association rules.

Association rule mining is one of the most important technique of the data mining. Its

aim is to extract interesting correlations, frequent patterns and association among set of items

in the transaction database. [14]

The problem of discovering association rules was first introduced, and then an

algorithm called AIS (Artificial Immune System) was proposed for mining association rules.

For the last few years, many algorithms for rule mining have been proposed. Most of them

follow the representative approach of the Apriori algorithm. Various researches have been

done to improve the performance and scalability of Apriori.

2.1 Apriori Algorithm

In the Apriori algorithm, the items are sorted in lexicographic order. Frequent itemsets

are computed iteratively, in ascending order of their size. The process takes k iterations,

where k is the size of the largest frequent itemsets. For each iteration 𝑖 ≤ k, the database is

scanned once and all frequent itemsets of size 𝑖 are computed. The first iteration computes the

set L1 of frequent 1-itemsets. A subsequent iteration 𝑖 consists of two phases. First, a set Ci

of candidate 𝑖-itemsets is created by joining the frequent (𝑖 − 1)-itemsets in Li−1 found in the

previous iteration. This phase is realized by the Apriori-gen function. Then the database is

Egyptian Computer Science Journal Vol. 38 No.3 September 2014 ISSN-1110-2586

- 53 -

scanned for determining the support of candidates in Ci and frequent 𝑖-itemsets are extracted

from the candidates. This process is repeated until no more candidates can be generated. [2]

Definition 1: (Association rule on frequent itemsets)

Rule X Y is an association rule on frequent itemsets if both X and XUY are frequent

itemsets. The complete set of association rules on frequent itemsets can be generated by an

adapted version of Apriori rule generation algorithm [3].

2.2 FP-Growth Algorithm [15]

The FP-Growth algorithm, proposed by Jiawei Han, et al., is an efficient and scalable

method for mining the complete set of frequent patterns by pattern fragment growth, using an

extended prefix-tree structure for storing compressed and crucial information about frequent

patterns named frequent-pattern tree (FP-tree). The FP-Growth is an alternative way to find

frequent itemsets without using candidate generation, thus improving performance. In their

study, they proved that their method outperforms other popular methods for mining frequent

patterns; e.g. the Apriori, Tree Projection [16], PRICES [17] algorithms. In another paper

[15], some optimizations are proposed to speed up FP-growth so that a single path FP-tree has

been further developed for performance improvements.

 In the following we present basic steps for FP-Growth algorithm:

 The algorithm avoids repeated database scans so it can scan the database in only two

scans.

 Scan the database to find all frequent itemsets and order them in descending frequent

order.

 Scan the database again to construct FP-tree according to FP-Tree construction. The

FP-Tree is adequate for mining frequent patterns and can replace the database.

 FP-Growth starts scanning the tree to compute the support of k-itemset and to examine

items under form the conditional pattern base.

 Generate association rules by adapted version of Apriori rule generation algorithm.

2.3 Close Algorithm [3]

In 1993, Agrawal et al. developed a method for mining traditional association rules

(TAR) [2]. Following that, the Apriori algorithm was proposed. Because TAR contains a

number of redundancies, Nicolas Pasquier, et al. proposed the Close algorithm to mine

frequent closed itemsets and added an adapted version of Apriori rules algorithm to generate

association rules from frequent closed itemsets. Additionally, the number of frequent closed

itemsets is often much smaller than the number of frequent itemsets, so the time for

generating rules from frequent closed itemsets is reduced significantly.

Nicolas Pasquier, et al. described the concept of frequent closed itemsets and added this

concept to the Apriori algorithm in order to find frequent closed itemsets. They also generated

valid association rules by an adapted version of Apriori rule generation algorithm.

Definition 2: An itemset X is closed in data set S if there exists no proper super-itemset

Y such that Y has the same support count as X in S.

Definition 3: A closed itemset X is a frequent closed itemset if and only if its support is

no less than the given minimum support threshold.

Egyptian Computer Science Journal Vol. 38 No.3 September 2014 ISSN-1110-2586

- 54 -

The advantages of using closed frequent itemset mining are (a) the number of frequent

closed itemsets is less when compared to number of frequent itemsets; and (b) all information

of frequent itemsets can be derived from closed frequent itemsets. The advantage of Close

algorithm reduces frequent itemsets and association rules so that it can find frequent closed

itemsets and generate association rules from frequent closed itemsets.

2.4 Top-k rules algorithm [5]

Top-k Rules algorithm was proposed by Philippe Fournier-Viger, et al. It is used to

mine the Top-k association rules, where k is the number of association rules to be found and

is set by the user. Mining the Top-k association rules has two challenges. First, Top-k rules

cannot rely on minimum support to prune the search space, but they could be modified to

mine frequent itemsets with minimum support = 1 to ensure that all top-k rules can be

generated in the generating rules step. Second, top-k association rules mining algorithm

cannot use the two steps process to mine association rules [1], but they would have to be

modified to be able to find the top-k rules by generating rules and keeping top-k rules. They

defined the efficient approach for generating association rules as “rules expansions” that does

not rely on the two steps process to mine association rules [1]. The Top-k rules algorithm is

an advantageous alternative to classical association rule mining algorithms for users who want

to control the number of association rules generated. Generally, the Top-k rules algorithm

contains the following steps:

 Scan database once to calculate tids({c}) for each single item c in the database.

 The algorithm generates all rules by joining pair of items i, j, where i and j each have

at least minimum support. The support of itemset (i, j) are calculated by intersect

tids(i) and tids(j). If support of pairs items is not satisfy minimum support, the rule

cannot be created with i, j. The rule is valid if the rule satisfies the minimum support

and minimum confidence. The support of rules {i} → {j} and {j} → {i} are calculate

by dividing the support of itemset (i,j) by number of transactions. The confidence of

{i} → {j} are calculated by dividing support of itemset (i,j) by support of itemset(i).

 All valid rules are added in the list L. Also all the rules are added to the set R where

each support of rules have at least minimum support.

 When a new valid rule is found, the rule adds to L. Then, if the list L contains more

than k rules and support of rule is greater than minimum support, the rules that are

equal minimum support can be removed until only k rules are kept. Finally, the

minimum support is changed to the lowest of support the rule in L.

 The set R start loop to expand all rules by selected rule with the highest support until

there is no more rules in R. For each rule, flag expandLR indicates if the rule should

be left and right expanded or just left expand.

2.5 TNR Algorithm [6]

Top-k non-redundant association rules (TNR) algorithm is combined the idea of mining a

set of non-redundant rules with the idea of Top-k association rules. The TNR algorithm is

based on “rule expansion” and two strategies to avoid generating redundant rules. It is similar

to the Top-k rules algorithm, but it added two strategies when save rules on L. After the

search procedure is modified, the every generated rule ra is added to L only if sup (ra) ≥

Egyptian Computer Science Journal Vol. 38 No.3 September 2014 ISSN-1110-2586

- 55 -

minsupp and ra is not redundant with respect to another rule. There are two strategies to

determine ra redundant as follows:

Strategy 1:

For each rule ra that generated such that sup (ra) ≥ minsupp, if ∃rb∈L| sup(rb)=sup(ra)

∧conf(rb)=conf(ra) ∧conf(rb) ∧left(rb) ⊆ left(ra) ∧right(ra)⊆ right(rb) and ra is redundant

with respect rb, then rais not added to L. ra otherwise, is added to L.

Strategy 2:

For each rule rb that generated such that sup (rb) ≥ minsupp, if ∃ ra∈L| sup(rb)=sup(ra)

∧conf(rb)=conf(ra) ∧conf(rb) ∧left(ra) ⊆ left(rb) ∧right(rb)⊆ right(ra) and ra is redundant

with respect rb, then rais removed from L. if remove the rule ra , it may have forced variable.

If that happened, then the algorithm may have missed some rules that have a support lower

than ra but are non-redundant. To solve this problem they added a parameter that they named

∆ that increases by the number of rules k necessary to raise the internal minimum support

variable.

3. Measuring Efficiency of the Algorithms

In this section, we compare previously described algorithms in the previous section and

discus observed differences in performance behavior.

3.1 Experiment Results

The Apriori, FP-Growth, Close, Top-k rules and TNR algorithms were implemented in

Java and tested on several datasets [18]. Table (1) summarizes the datasets characteristics.

The platform’s specifications used for this test were: Intel core i3 (3*2.40 GHz), 4GBs RAM

memory, Windows 8. In order to obtain more realistic results, a Microsoft SQL 2008 Server

was used. To study the performance, four datasets has been used to support factors between

40% and 90%, and also confidence factor between 40% and 90%. Taking into account these

considerations, the datasets depend on the number of items in a transaction, number of items

in a frequent itemset, etc.

Table (1) Datasets’ Characteristics

Datasets Number of

Transactions

Number of

distinct Items

Mushroom 8124 119

Pumsb 49046 2097

T10I4D100K 100000 870

Retail 88162 16470

Some of the results of the comparison between the Apriori, FP-growth, Close, Top-k

rules, and TNR algorithms for minimum support and minimum confidence factors between

40% and 90% and for different datasets are presented in Tables 2-13.

Egyptian Computer Science Journal Vol. 38 No.3 September 2014 ISSN-1110-2586

- 56 -

Table (2) Number Rules of Five Algorithms on Mushroom

Table (3) Execute Time of Five Algorithms on Mushroom.

MinSup

&MinConf

Execute time of

Apriori (ms)

Execute time of

FP-Growth (ms)

Execute time

of Close (ms)

Execute time of

Top-k rules (ms)

Execute time of

TNR (ms)

40% 1442189 194537 1437958 1876629 14322037

50% 1315282 193373 1058754 477997 2332565

60% 1265774 192328 1054246 224818 676054

70% 1096240 192646 1055215 194669 575561

80% 863433 191910 867130 146355 352596

90% 755820 192119 677265 104866 127540

Table (4) Maximum Memory of Five Algorithms on Mushroom

MinSup

&MinConf

Maximum

memory usage

of Apriori (mb)

Maximum memory

usage of FP-Growth

(mb)

Maximum memory

usage of Close (mb)

Maximum

memory usage

of Top-k rules

(mb)

Maximum

memory usage of

TNR (mb)

40% 17.08866 14.21042 17 84.74023 440.4

50% 18.6 15.24411 16.88 27.28 56.2315

60% 13.2 11.61 16.2 13.8 18.8

70% 16.4 18.0332 13.6 12.644 16.9

80% 10.6 12.601 10.8 11.15 13.4

90% 16.5 16.9 16.6 9.75 9.6

Table (5) Number Rules of the Five Algorithms on Retail

MinSup

&MinConf

Frequent itemsets

by Apriori and FP-

Growth algorithms

Frequent closed

itemsets by

Close algorithm

Number of

Rules by Close

algorithm

Number of Rules by

Apriori, FP-Growth

and Top-k rules

algorithms

Number of Rules

by TNR algorithm

40% 95 16 316 1024 1003

50% 71 13 210 640 601

60% 35 7 70 190 185

70% 31 6 64 180 174

80% 11 3 14 22 22

90% 7 2 8 12 12

MinSup

&MinConf

Frequent itemsets

by Apriori and FP-

Growth algorithms

Frequent closed

itemsets by

Close algorithm

Number of

Rules by Close

algorithm

Number of Rules by

Apriori, FP-Growth

and Top-k rules

algorithms

Number of Rules

by TNR algorithm

40% 565 140 2654 7020 6546

50% 153 45 516 1148 1113

60% 51 19 136 266 253

70% 31 12 90 180 170

80% 23 10 54 88 82

90% 9 5 12 14 14

Egyptian Computer Science Journal Vol. 38 No.3 September 2014 ISSN-1110-2586

- 57 -

Table (6) Execute Time of Five Algorithms on Retail.

MinSup

&MinConf

Execute time of

Apriori (ms)

Execute time of

FP-Growth (ms)

Execute time

of Close (ms)

Execute time of

Top-k rules (ms)

Execute time of

TNR (ms)

40% 93140175 14312046 93087818 64094737 75028720

50% 93125614 14301127 93003989 64011955 75023807

60% 78959334 14253814 78899075 46929071 57717263

70% 78896862 14224032 78808594 46499056 57609598

80% 50149892 14219850 50140615 38517208 49518278

90% 50145794 14208197 50140068 33519667 43529381

Table (7) Maximum Memory of Five Algorithms on Retail.

MinSup

&MinConf

Maximum

memory usage

of Apriori (mb)

Maximum memory

usage of FP-Growth

(mb)

Maximum memory

usage of Close (mb)

Maximum

memory usage

of Top-k rules

(mb)

Maximum

memory usage of

TNR (mb)

40% 14.16 16.66 13.37 303.9 414.23

50% 13.95 16.95 13.21 238.7108 381.514

60% 15.11 16.83 14.83 213.8 257.5365

70% 13.11 15.41 12.02 212.2 216.9

80% 17.7 16.7 16.7 188.32 191.6

90% 16.6 14.3 12.1 177.302 179.803

Table (8) Number Rules of Five Algorithms on T10I4D100K

MInSup

&MinConf

Frequent itemsets

by Apriori and FP-

Growth algorithms

Frequent closed

itemsets by

Close algorithm

Number of

Rules by Close

algorithm

Number of Rules

by Apriori, FP-

Growth and Top-k

rules algorithms

Number of Rules

by TNR algorithm

40% 127 49 784 1932 1902

50% 127 49 784 1932 1902

60% 63 28 318 602 585

70% 63 28 318 602 602

80% 31 16 130 180 180

90% 9 5 8 8 8

Table (9) Execute Time of Five Algorithms on T10I4D100K.

MinSup

&MinConf

Execute time of

Apriori (ms)

Execute time of

FP-Growth (ms)

Execute time

of Close (ms)

Execute time of

Top-k rules (ms)

Execute time of

TNR (ms)

40% 80724201 10682009 80704601 40795514 45985017

50% 80743111 10681000 80713111 40779798 45899703

60% 69845174 10718988 69841174 32299910 39512793

70% 69944142 10712970 69743172 32374701 39499887

80% 59136272 10645311 59126373 26875612 30987690

90% 26749101 10642572 26658092 9423634 13569837

Egyptian Computer Science Journal Vol. 38 No.3 September 2014 ISSN-1110-2586

- 58 -

Table (10) Maximum Memory of Five Algorithms on T10I4D100K.

MinSup

&MinConf

Maximum

memory

usage of

Apriori (mb)

Maximum

memory usage of

FP-Growth (mb)

Maximum

memory usage of

Close (mb)

Maximum

memory usage

of Top-k rules

(mb)

Maximum

memory usage

of TNR (mb)

40% 15.75 16.95 15.86 402.5 489.8

50% 16.2 17.1 16.1 402.7 489.9

60% 14.03312 15.83312 14.211 143.8301 147.9

70% 14.92 15.92 14.73 144.534 156.35

80% 11.813 13.0111 12.1 112.92 115.92

90% 16.451 13.6233 15.501 47.835 50.01

Table (11) Number Rules of Five Algorithms on Pumsb.
MinSup

&MinConf

Frequent itemsets

by Apriori and FP-

Growth algorithms

Frequent closed

itemsets by

Close algorithm

Number of

Rules by Close

algorithm

Number of Rules

by Apriori, FP-

Growth and Top-k

rules algorithms

Number of Rules

by TNR algorithm

70% 356 79 1222 4546 4430

90% 7 3 4 4 4

Table (12) Execute Time of Five Algorithms on Pumsb.

MinSup

&MinConf

Execute time of

Apriori (ms)

Execute time of

FP-Growth (ms)

Execute time

of Close (ms)

Execute time of

Top-k rules (ms)

Execute time of

TNR (ms)

70% 70156171 9474078 68967495 91332058 112697223

90% 47195453 9184603 46987351 6092669 9467830

Table (13) Maximum Memory of Five Algorithms on Pumsb.

MinSup

&MinConf

Maximum

memory usage

of Apriori (mb)

Maximum memory

usage of FP-Growth

(mb)

Maximum memory

usage of Close (mb)

Maximum

memory usage of

Top-k rules (mb)

Maximum

memory usage

of TNR (mb)

70% 14.027 18.205 14.05 903.84 989.87

90% 9.627 16.94 14 20.03223 189.1

3.2 Discussion

Tables 2, 5, 8 and 11 show the number of rules generated by algorithms, while tables (3,

6, 9 and 12) and Figure (1, 3, 5 and 7) show the execution times for the five algorithms. The

best performance of algorithms is FP-growth algorithm when the datasets contain small or

large frequent itemsets. Also Top-k rules and TNR algorithms are better than Apriori and

Close algorithms when the datasets have small frequent itemsets as in Retail and

T10I4D100K. For high minimum support, minimum confidence of 90%, and datasets of

Mushroom and Pumsb, the Top-k rules algorithm has the best performance.

Tables (4, 7, 10 and 13) and Figures (2, 4, 6 and 8) show the maximum memory usage

of five algorithms on four datasets. The Top-k rules and TNR algorithms have the highest

memory usage, but Apriroi and Close algorithms have the lowest memory usage.

Egyptian Computer Science Journal Vol. 38 No.3 September 2014 ISSN-1110-2586

- 59 -

Figure (1) Execution Time of Five Algorithms on Mushroom

Figure (2) Maximum Memory Usage (MB) of Five Algorithms on Mushroom

Figure (3) Execution Time of Five Algorithms on T10I4100K

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

40 50 60 70 80 90

Apriori

Close

FP-Growth

Top-k rules

TNR

MinConf(%)

Ti
m

e(
m

s)

0

100

200

300

400

500

40 50 60 70 80 90

Apriori

Close

FP-Growth

Top-k rules

TNR

MinConf(%)

M
em

o
ry

 U
sa

ge
(m

b
)

0

20000000

40000000

60000000

80000000

100000000

40 50 60 70 80 90

Apriori

Close

FP-Growth

Top-k rules

TNR

MinConf(%)

Ti
m

e(
m

s)

Egyptian Computer Science Journal Vol. 38 No.3 September 2014 ISSN-1110-2586

- 60 -

Figure (4) Maximum Memory Usage (MB) of Five Algorithms on T10I4100K

Figure (5) Execution Time of Five Algorithms on Retail.

Figure (6) Maximum Memory Usage (MB) of Five Algorithms on Retail

0

100

200

300

400

500

600

40 50 60 70 80 90

Apriori

Close

FP-Growth

Top-k rules

TNR

MinConf(%)

M
em

o
ry

 U
sa

ge
(m

b
)

0

20000000

40000000

60000000

80000000

100000000

40 50 60 70 80 90

Apriori

Close

FP-Growth

Top-k rules

TNR

MinConf(%)

Ti
m

e(
m

s)

0

50

100

150

200

250

300

350

400

450

40 50 60 70 80 90

Apriori

Close

FP-Growth

Top-k rules

TNR

MinConf(%)

M
em

o
ry

 U
sa

ge
(m

b
)

Egyptian Computer Science Journal Vol. 38 No.3 September 2014 ISSN-1110-2586

- 61 -

Figure (7) Execution Time of Five Algorithms on Pumsb.

Figure (8) Maximum Memory Usage (MB) of Five Algorithms on Pumsb

4. Conclusion and Future Work

 Association rules can be used to find the link between different products (items) in the

transaction database, through which the buying behaviour patterns of customers can be

discovered. This paper measured the efficiency of association rules algorithms on large

datasets because the size of frequent itemsets differ depending on the datasets. The best

performance is the FP-growth algorithm on different datasets, while the TNR algorithm has

the best generated non-redundant association rules. The Top-k rules algorithm has the best
performance on different datasets when the minimum support and minimum confidence are high.

In future, we will develop efficient algorithms for the fast mining of non-redundant

association rules to be generated by the combination of FP-growth and TNR algorithms.

Subsequently, efficient algorithms for mining frequent closed itemsets from large databases

will be discussed.

References

[1] Rakesh Agrawal, Tomasz Imielinski and Arun Swami, “Mining Association Rules

between Sets of Items in Large Databases”, Proceedings of the 1993 ACM SIGMOD

Conference Washington DC, USA, May 1993.

[2] Rakesh Agrawal and Ramakrishnan Srikant, “Fast Algorithms for Mining Association

Rules”, Proc. of the 20
th

 VLDB conference Santiago, Chile, 1994.

0

20000000

40000000

60000000

80000000

100000000

120000000

70 90

Apriori

FP-Growth

FP-Growth

Top-k rules

TNR

MinConf(%)

Ti
m

e(
m

s)

0

200

400

600

800

1000

1200

70 90

Apriori

Close

FP-Growth

Top-k rules

TNR

MinConf(%)

M
em

o
ry

 U
sa

ge
(m

b
)

Egyptian Computer Science Journal Vol. 38 No.3 September 2014 ISSN-1110-2586

- 62 -

[3] Nicolas Pasquier,Yves Bastide, Rafik Taouil and Lotfi Lakhal, “Efficient mining of

association rules using closed itemset lattice”, Information Systems, Vol. 24, No.1, Pages

25-46,1999.

[4] Jiawei Han, Jian Pei and Yiwen Yin, “Mining frequent patterns without candidate

generation”, In Proc. 2000 ACM-SIGMOD Int. Conf. Management of Data

(SIGMOD’00), Dallas, TX, Pages 1–12, 2000.

[5] Philippe Fournier-Viger, Cheng-Wei Wu and Vincent S. Tseng, “Mining top-k association

rules”, In Proceedings of the 25th Canadian conference on Advances in Artificial

Intelligence, Pages 61-73, 2012.

[6] Philippe Fournier-Viger and Vincent S. Tseng, “Mining Top-K Non-Redundant

Association Rules”, In Proceedings of the 20th international conference on Foundations

of Intelligent Systems, Pages 31-40,2012.

[7] Yubo Yuan and Tingzhu Huang, “A Matrix Algorithm for Mining Association Rules”,

Lecture Notes in Computer Science, vol.3644, Pages 370 – 379, Sep 2005.

[8] Somboon Anekritmongkol and M.L.Kulthon Kasemsan, “Effective Candidates Generate

Algorithm for Association Rules”, International Conference on Future Information

Technology (IPCSIT), vol.13, 2011.

[9] Nicolas Pasquier,Yves Bastide, Rafik Taouil and Lotfi Lakhal, “Discovering Frequent

Closed Itemsets for Association Rules”, Proceeding 7
th

 International Conference

Database Theory, Pages 398-416, 1999.

[10] G. Grahne and J. Zhu, “Fast algorithms for frequent itemset mining using FP-trees”,

Knowledge and Data Engineering, IEEE Transactions on , vol.17, No 10, Pages 1347 -

1362, Oct 2005.

[11] Liping Ji, Kian-Lee Tan, K H. Tung, “Compressed Hierachical Mining of frequent

Closed Patterns from Dense Data Sets”, IEEE Transaction on Knowledege and

Engineering, vol.19, NO.9, Sep 2007.

[12] Mafruz Zaman Ashrafi, David Taniar, and Kate Smith, “A New Approach of Eliminating

Redundant Association Rules”, Lecture Notes in Computer Science, vol.3180, Pages 465

– 474, 2004.

[13] Mafruz Zaman Ashrafi, David Taniar and Kate Smith, “Redundant Association Rules
Reduction Techniques”, Lecture Notes in Computer Science, vol.3809, Pages 254 – 263, 2005.

[14] Jiawei Han and Micheline Kamber, “Data Mining Concepts and Techniques”, Morgan

Kaufmann, 2006.

[15] Jiawei Han, Jian Pei, Yiwen Yin and Runying Mao, “Mining Frequent Patterns without

Candidate Generation: A Frequent-Pattern Tree Approach”, Data Mining and Knowledge

Discovery, vol.8, Pages 53–87, 2004.

[16] Ramesh C. Agarwal, Charu C. Aggarwal, V.V.V. Prasad, “ A tree projection algorithm

for generation of frequent itemsets”, In J. Parallel and Distributed Computing, 2000.

[17] Chuan Wang, Christos Tjortjis, “PRICES: An Efficient Algorithm for Mining Association

Rules”, Lecture Notes in Computer Science, vol.3177, Pages 352 – 358, Jan 2004.

[18] http://fimi.ua.ac.be/data/, 2014.

http://fimi.ua.ac.be/data/

