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Abstract  
 

In the present paper we develop a stochastic (Markov chain) model for a mathematical 

description of the decision making (DM) process and we apply principles of fuzzy logic (FL) 

in representing the DM process in a fuzzy environment. Further, we develop an innovative 

approach for studying the step of verification of a chosen decision, which is based on 

principles of FL (a special form of the COG defuzzification technique) and we compare this 

approach with other traditional (statistical) approaches that can be applied for the same 

reason. Examples are also given to illustrate the use of our results in practice. 
 

Keywords: Decision making (DM), GPA Method, Markov chains (MC), Fuzzy sets, Fuzzy 
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1. Introduction 
 

Decision Making (DM) is the process of choosing a solution between two or more 

alternatives, aiming to achieve the best possible results for a given problem. Obviously the 

above process has sense if, and only if, there exist more than one feasible solutions, together 

with a suitable criterion (or criteria) that helps the decision maker (d-m) to choose the best 

among these solutions. We recall that a solution is characterized as feasible, if it satisfies all 

the restrictions imposed onto the real system by the statement of the  problem as well as all 

natural restrictions imposed onto the problem by the real system, e.g. if x denotes the quantity 

of stock of a product, it must be x0. The choice of the suitable criterion, especially when the 

results of DM are affected by random events, depends upon the desired goals of the d-m; e.g. 

optimistic or conservative criterion etc). 

The rapid technological progress , the impressive development of the transport means, 

the globalization of our modern society, the  enormous changes  happened to the  local and 

international economies and other similar reasons led during the last 50-60 years to a 

continuously increasing complexity of the problems of  our everyday life. As a result the DM 

process became in many cases a very difficult task, so that it is impossible to be based on the 

d-m’s experience, intuition and skills only, as it usually happened in the past. Thus, from the 

beginning of the 1950's a progressive development started of a systematic methodology for 

the DM process, which is based on Probability Theory, Statistics, Economics, Psychology, etc 

and it is known as Statistical Decision Theory  (e.g. see [1]). 
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 According to the nowadays existing standards the DM process involves the following steps: 

 d1: Analysis of the decision-problem, i.e. understanding, simplifying and 

reformulating the problem in a way permitting the application of the principles of SDT 

on it. 

 d2: Collection from the real system and interpretation of all the necessary information 

related to the problem. 

 d3: Determination of all the alternative feasible solutions. 

 d4: Choice of the best solution in terms of the suitable (according to the decision 

maker’s goals and targets) criterion. 

      One could add one more step to the DM process, the verification of the chosen decision 

according to the results obtained by applying it in practice. However, this step is extended to 

areas, which due to their depth and importance for the administrative rationalism have 

become autonomous. Therefore, it is usually examined separately from the other steps of the 

DM process. 

      Notice that the first three steps of the DM process presented above are continuous in the 

sense that the completion of each one of them usually needs some time, during which the 

decision maker's reasoning is characterized by transitions between hierarchically 

neighbouring steps. In other words the DM process is not a linear process. Accordingly its 

flow-diagram is represented in Figure 1 below: 

            d1      d2     d3   d4   

Figure 1: The flow-diagram of the DM process  

 At this point it is worthy to notice that frequently in our everyday life a DM problem is 

expressed in an ambiguous way involving a degree of uncertainty. For example, this happens 

when a company wishes to employ as a sales manager the candidate with the best 

qualifications, provided that his/her request for salary is not very high and that his/her 

residence is not very far from the companies place (see section 3). In such cases the classical 

Statistical Decision Theory based on Probability and on principles of the traditional bivalent 

logic (yes-no) is proved inadequate for helping the d-m to take the correct decision. On the 

contrary, Fuzzy Logic (FL), based on the notion of fuzzy sets introduced by Zadeh [2] in 

1965, due to its nature of including multiple values, offers  a rich field of resources for this 

purpose.    

In the present paper we are going to present a stochastic (Markov chain) model for a 

mathematical description of the DM process and to apply principles of FL in representing the 

DM process in a fuzzy environment. Accordingly the rest of the paper is organized as follows: 

In section 2 we develop our Markov model for the DM process and we present an example 

illustrating its use in practice. In section 3 we present examples illustrating the process of DM 

under fuzzy conditions. Further, in section 4 we develop an innovative approach for studying 

the step of verification of a decision, which is based on principles of FL and we compare this 

approach with other traditional statistical approaches. Finally, our last section 5 is devoted to 
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the statement of our conclusions and to discussion of our future plans for further research on 

the subject. 

2. The Markov Chain Model  

Roughly speaking, a Markov chain (MC)  is a special type of a stochastic process that 

moves in a sequence of steps (phases) through a set of states and whose main characteristic, 

known as the Markov property, is that it has memory of only one state. This means that the 

probability of entering a certain state at a certain step of the process depends only on the state 

occupied in the previous step. However, in practice during the process of mathematical 

modelling there is usually a need to simplify the real system in a way that enables the 

formulation of it to a form ready for mathematical treatment (assumed real system, e.g. see 

[3]. This enables a number of authors to state the Markov property in a more general context 

by accepting that the probability of entering a certain state at a certain step of the process, 

although it is not necessarily independent from older states, it depends mainly on the state 

occupied in the previous step (e.g. [4], Chapter 12 ).  When a MC has a finite number of 

states, it is called a finite Markov chain. Here, we assume the reader to be familiar with the 

basics of the theory of finite MC, for which we refer to the book [5]. 

In obtaining a mathematical formulation of the DM process we introduce a finite MC on 

its steps by adopting the notion of the Markov property in its wider context (see above), a fact 

which is very close to the reality. In other words, this means that the states of our chain are the 

steps di, i = 1, 2, 3, 4, of the DM process introduced in the previous section. It is logical to 

accept that d1 is always the starting state. Further, we observe that, when the chain reaches the 

state d4 (end of the DM process) it is impossible to leave it.  This means that d4 is the unique 

absorbing state of the chain. Therefore, since it is obviously possible from any state to reach 

the absorbing state d4, not necessarily in one step (see Figure 1), our chain is an absorbing 

Markov chain ( [5], Chapter III). 

Let us now denote by pij the transition probability from state di to dj , i,j = 1,2,3,4 . Then 

the transition matrix of our MC is 

                  d1      d2      d3      d4      

A =  

d

d

d

d

p p

p p

1

2

3

4

21 23

32 34

0 1 0 0

0 0

0 0

0 0 0 1



















, where we obviously have (probability of a certain fact) that   

p21+p23 = p32+p34 = 1                                                    (1) 
 

Let us also denote by φ0, φ1, φ2, ........ the several steps of the chain and let  

Pi= [p1
( i )

 p2
( i )

 p3
(
 
i ) 

p4
( i )

] be the row - matrix giving the probabilities for the chain to be 

in each one of  its states at the step  φ i , i = 0,1,2,....  . Then, since d1 is always the starting 

state, we have that  P0 = [1 0 0 0]. Further it is well known that Pi+1 =  Pi A  and therefore  

P1 = P0A = [0 1 0 0] 

P2 = P1 A = [p21 0 p23 0]    
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P3 = P2 A = [0  p21+ p23p32  0  p23p34]                             (2). 

P4 = P3A  = [p21
2
+p21p23p32  0  p21p23+ p23

2
 p32   p23p34 ]  and so on.  

 

In general an inductive argument shows that   Pn  =  P0A
n
 , n = 1, 2, 3,...      .         

We shall now bring A to its standard form A* by listing the absorbing state first and 

then we partition A* as follows:      

                     d4         d1        d2     d3 

A  =   

d

d

d

d

p p

p p

4

1

2

3

21 23

34 32

1 0 0 0

0 0 1 0

0 0

0 0



















. Let Q = 

0 1 0

0

0 0

21 23

32

p p

p

















  be the matrix of non absorbing 

states and denote by I3 the 3x3 unitary matrix , then it is well known that I3-Q is always an 

invertible matrix ( e.g. see [6], section 2).  

The fundamental matrix N of the chain is defined by N= (I3-Q)
-1

 = 1

3D Q(I )
 adj (I3-Q), 

where D(I3-Q) denotes the determinant and adj (I3-Q) denotes the adjoint matrix of I3-Q. We 

recall that the elements of adj (I3-Q) are the algebraic complements of the elements of the 

transpose matrix of I3-Q. Thus, by a straightforward calculation and using relation (1) we 

obtain that N =  1

23 34p p
 

1 1

1

32 23 23

21 23

21 32 32 23

















p p p

p p

p p p p

 = [nij]  , i,j = 1,2,3       (3) 

We recall that the ij-th entry of N gives the mean number of times in state dj before the 

absorption, when the chain is started in state di. Therefore, since in our case d1 is always the 

starting state, the mean number of steps taken before absorption is given by:  

t =  n i

i

1

1

3



   =   
2 23 34

23 34

p p

p p
                                     (4). 

 Obviously, the bigger the value of t, the more the difficulties that a d-m faces during 

the DM process; in other words t provides an indication for the difficulty of the DM process 

(other indications for the difficulty of the DM process could be the time spent by the d-m to 

complete it, etc).  

      The following example illustrates the use of the above MC model in practice: 

 

EXAMPLE: In the province of Akhaia of Greece the manager of a local company A, 

which produces, pucks up and trades olive oil, has employed a specialist to help him in 

deciding about the proper place for building a new factory. The deal is to pay the specialist for 

six working hours (w. h.) whenever an analysis of the DM problem is required, for 54 w. h. 

whenever collection and interpretation of the necessary information is needed, for 28 w. h. 

whenever the determination of all feasible solutions is attempted and for 9 w. h. for the final 
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choice of the best decision.  The manager wants to determine the probability for the DM 

process to be terminated in four steps and to estimate the mean number of steps needed before 

taking the decision as well as the expected number of w. h. to be paid to the specialist for his 

services. 

We shall analyze the DM process for the above DM problem according to the lines of 

the above presented MC model: 

d1: Analysis of the DM problem 

      The analysis of the DM problem, performed by the specialist, showed that the profitability 

of the decision to be taken depends upon the types (qualities) of the oil produced by the 

existing in the area where A acts competitive companies.  

d2: Collection and interpretation of the necessary information 

      The relevant investigation has shown that there is only one competitive company in the 

area, say B, which produces three different types of oil, say W1, W2 and W3. 

d3: Determination of the feasible solutions 

      The general situation of the area (communications, traffic, the already existing factories 

and storehouses of  the companies A and B etc), combined with the funds available by the 

company A for the construction of  the new factory, suggest that there are four  favourable 

places , say P1 , P2 , P3 and P4 for the possible construction of  the new factory.  However, the 

need of some new information (data of the market’s research) became necessary for the 

specialist at this point in order to be able to proceed to the choice of the best solution.  

d3   d2:  Going back from d3 to d2 

      The market's research has shown that the expected net profits of the company A with 

respect to the favourable places for the construction of the new factory and the types of the oil 

produced by the company B are those shown in Table 1 below: 
 

Table1: Net profits of the company A 

      P1    P2    P3   P4 

W

W

W

1

2

3

3 8 5 4

4 2 6 5

2 1 1 1

















 

d2    d3: New transition from d2   to d3        

From Table 1 it becomes evident that the feasible solution P4 is worse than P3 and 

therefore P4 is rejected. 

d4: Choice of the best solution 

The manager of the company does not want to risk for earning low profits by 

constructing the new factory, which means that the specialist must adopt a conservative 

criterion for the choice of the best place for building it. In such cases the most frequently used 

criterion is the maximin of payoffs (profits), due to Wald. The Wald’s criterion, based on the 
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Murphy’s law assuming that the worst possible fact to be happen will finally happen, suggests 

to maximize the minimal possible for each case profits. In other words, since the minimal 

expected profit from the choice of P1 is 2 monetary units and  the minimal profit from the 

choice of   P2 or of  P3  is 1 monetary unit (see Table 1), according to the Wald’s criterion the 

place P1  must be chosen for building the new factory. 

Data evaluation 

From the above analysis of the DM process it becomes evident that p21 = 0 and p23 = 1. 

We also claim that p32 = p34 = 0.5 . In fact, when the MC reaches the state d3 for first time, the 

probability of returning to d2 at the next step is 1, since collection and interpretation of new 

information becomes necessary.  Further, the second time that the MC reaches d3  the 

probability of returning  to d2 at the next step is 0, since no more information is needed for the 

choice of the best solution.  Therefore the transition probability p32 is equal to the mean  0 1
2
  

and also p34 = 1- p32 = 0.5.   

      Replacing the above values of the transition probabilities to the third of relations (2) we 

find that P3 = [0  0.5  0  0.5] , i.e. p4
(3)

 = 0.5, which means that the probability for the DM 

process to be terminated in 4 steps is 50%. This could happen, if there was no feasible 

solution worse than one of the others and therefore we didn't reject any of them, as we did 

above for P4. 

      Further, from relation (3) we obtain that N = 1
0 5.

 

0 5 1 1

0 1 1

0 0 5 1

.

.

















, wherefrom we find that 

n11 = 1 and n12 = n13 = 2. Thus, the mean number of steps for the DM process before taking 

the decision is t = 5 steps, while the expected number of w. h. to be paid to the specialist is 

equal to 1*6 + 2*54 + 2*28 + 1*9 = 179 w. h.  

3. DM under Fuzzy Conditions 

 
In many cases a DM problem is expressed in an ambiguous way involving a degree of 

uncertainty. In such cases, as said in our introduction, while the classical Statistical Decision 

Theory cannot offer an effective help for the DM process, FL due to its nature of including 

multiple values, offers a rich field of resources. For general facts on FL we refer to the book 

[7]. The following example illustrates the standard process of DM under fuzzy conditions: 

 

      EXAMPLE 1: A company wants to employ as a sales manager the candidate with the best 

qualifications, provided that his/her request for salary is not very high and that his/her 

residence is in a close driving distance from the companies place. They are four candidates for 

the above position, say Α, Β, C and D with annual salary requests 29050, 25000, 14050, and 

6250 euros respectively. Who of them is the best choice for the company under the above 

(fuzzy) conditions? 

 

      In this DM problem we have the fuzzy goal (G) of employing the candidate with the best 

qualifications under the fuzzy constraints that his request for salary must not be very high (C1) 
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and that his/her residence must be in a close driving distance from the companies place (C2). 

The steps of the DM process in such fuzzy situations are the following: 

      Step 1: Choice of the universal set of the discourse 

      In our case we must obviously consider as universal set the set U = {A, B, C, D} of the 

four candidates. 

      Step 2:  Fuzzification of the decision problem’s data 

      In this step the fuzzy goal and the fuzzy constraints of the problem are expressed as fuzzy 

sets in U. For this, we must define properly the corresponding for each case membership 

function.  

For example, the membership function 
1

: [0,1]Cm U   for the fuzzy constraint C1 can be 

defined by:  
1Cm (x) =1 for s(x) < 6000, m

1C (x) = 1 – 2 * 10 5  * s(x} for 6000 s(x) 30000 

and m
1C (x) = 0 for s(x) > 30000, where s(x) denotes the salary of the candidate x,  for all x in 

U. Then m
1C (A) = 1 – 2 * 0.2905 = 0.419. Similarly we calculate the membership degrees of 

B, C and D and we write the constraint C1 as a fuzzy set in U in the form of the symbolic sum 

C1 = 0.419/A + 0.5/Β + 0.719/C + 0.875/D. 

In the same way (the relevant details are omitted here for reasons of brevity) we 

expressed the fuzzy goal G and the other fuzzy constraint C2 as fuzzy sets in U in the form G 

= 0.9/A + 0.6/B + 0.8/C + 0.6/D and C2 = 0.1/Α + 0.9/Β + 0.7/C + 1/D respectively
†
. 

Step 3: Evaluation of the fuzzy data 

      According to the Bellman-Zadeh’sb criterion  for DM in a fuzzy environment [8], the 

fuzzy decision F expressed as a fuzzy set in U is the  intersection of the fuzzy sets G , C1 and 

C2 of  U and the solution of the problem corresponds to the element x of  U  having the 

highest membership degree in F.  

      Further, it is well known that the membership function of the intersection G   C1    C 2  

is defined by m G   C1    C 2
(x) = mF = min {mG(x), 

1Cm (x), 
2Cm (x)} for all x in U. Therefore 

it is easy to check that F = 0.1/A + 0.5/B  +  0.7/C  +  0.6/D.   

Step 4: Defuzzification  

The highest membership degree in F is 0.7 and corresponds to the candidate C. 

Therefore the candidate C is the best choice for the company.  

 

The fuzzy model of Bellman-Zadeh can be further extended to accommodate the 

relative importance that could exist for the goal and constraints by using weighting 

coefficients. The following example illustrates this case: 

 

                                            

†
 
†
We recall that the definition of the membership function is more or less arbitrary usually depending on 

statistical data collected from the population that we study. However a necessary condition for the creditability 

of the fuzzy model in representing the corresponding real situation is that the choice of the membership function 

is compatible with the rules of the common logic. 
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EXAMPLE 2:  Reconsider Example 1 and assume that the Management Council of the 

company, taking into account the existing company’s budget, the results of the oral interviews 

of the four candidates and some other relevant factors, decided to attach weights 0.5, 0.2 and 

0.3 to the goal G and to the constraints C1 and C2 respectively. Which will be the company’s 

choice under these conditions? 

In this case the membership  function of the fuzzy decision F is defined through a linear 

combination of the weighted goal and constraints of the form mF (x) = w 1 * mG (x) + w 2 *m
1C

(x) + w 3  * m
2C (x), where mG (x), m

1C (x), m
2C (x) are the membership degrees in G, C1 and C2 

respectively of each x in U (see Example 1) and the coefficients w 1 , w 2  and w 3  are the 

weights attached  to the fuzzy goal and constraints respectively, with w 1 + w 2 +w 3 =1 ([t], 

Chapter 6). Therefore the membership degree of the candidate A in the fuzzy decision F in 

this case is mF (A) = 0.5 * 0.9 + 0.419 * 0.2 + 0.1 * 0.3 = 0.638. In the same way we find that 

mF (B) = 0.67, mF (C) = 0.7538 and mF (D) = 0.775. Therefore the candidate D will be the 

company’s choice in this case. 
 

4. Verification of a Decision: A Fuzzy Approach 
 

As it has been explained in our introduction, the verification of a taken decision is a 

step of the DM process, which is usually examined separately from its other steps. In this 

section we shall apply an innovative approach for examining this important step, which is 

based on principles of FL. More explicitly, we shall apply a widely used in FL defuzzification 

method, usually referred as the center of gravity (COG), or as the centroid technique.  

According to the COG method the defuzzification of a fuzzy situation’s data is succeeded 

through the calculation of the coordinates of the COG of the level’s section contained 

between the graph of the membership function associated with this situation and the OX axis 

(e.g. see [9]).   

Prof. Subbotin (State University, Los Angeles, USA) and the author of this article have 

adapted properly several times in the past the COG technique (either collaborating or 

independently to each other) for assessing students’ skills in a number of different (mainly 

mathematical) tasks (e.g. [10-11], [13-16], etc), for testing the effectiveness of a CBR system 

[12] and for measuring Bridge players’ performance [17]. Here, using similar techniques, we 

shall adapt the COG method for examining the step of verification of a taken decision and we 

shall compare this approach with other traditional (statistical) approaches that can be applied 

for the same reason. All the above are illustrated by the following example: 

EXAMPLE: A car industry decided to circulate its new model in the market in two 

different types, the luxury (L) Class and the regular (R) Class. Six months after the purchase 

of their cars the customers were asked to complete a written questionnaire concerning the 

degree of satisfaction for their new cars. Their answers were marked by the industry’s 

marketing department within a climax from 0 to 100 and they were divided in the following 

five categories according to the corresponding scores: A (90-100) = Full satisfied customers, 

B (75-89) = Very satisfied customers, C (60-74) = Satisfied customers, D (50-59) = Rather 

satisfied customers and E (0-49) = Unsatisfied customers.  
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      The scores of the customers’ answers were the following: 

L Class: 100(5 times), 99(3), 98(10), 95(15), 94(12), 93(1), 92 (8), 90(6), 89(3), 88(7), 

85(13), 82(4), 80(6), 79(1), 78(1), 76(2), 75(3), 74(3), 73(1), 72(5), 70(4), 68(2), 

63(2), 60(3), 59(5), 58(1), 57(2), 56(3), 55(4), 54(2), 53(1), 52(2), 51(2), 50(8), 

48(7), 45(8), 42(1), 40(3), 35(1). 

R Class:  100(7), 99(2), 98(3), 97(9), 95(18), 92(11), 91(4), 90(6), 88(12), 85(36), 82(8), 

80(19), 78(9), 75(6), 70(17), 64(12), 60(16), 58(19), 56(3), 55(6), 50(17), 45(9), 

40(6).  

      The data obtained above are summarized in Table 2:   
 

Table 2: Questionnaire’s data 

Customers’ 

Categories 

L 

Class 

R 

Class 

A 60 60 

B 40 90 

C 20 45 

D 30 45 

E 20 15 

Total 170 255 

 

The evaluation of the above data (verification of the industry’s decision about its new 

model) will be performed below in two ways: 

I) Traditional (statistical) methods 

      a) Calculation of the means: It is straightforward to calculate the means mL and mR of the 

scores of the customers’ answers for the Luxury and the Regular Class respectively, which 

are mL 76.006 and mR 75.09. This means that the customers were (marginally) very 

satisfied from their new cars, with the customers who purchased the L Class being  a little bit 

better satisfied than those who purchased the R Class. Therefore the industry’s decision for 

the circulation of its new model can be characterized as rather successful in general, although 

some improvements should be attempted in future for the cars of this new model and 

especially for the R Class. 

           b)  Application of the GPA method: The Great Point Average (GPA) is a weighted mean 

where more importance is given to the higher scores achieved by the individuals of a, to 

which {high scores} greater coefficients (weights) are attached. In other words the GPA 

method, which is very frequently used in the USA, focuses to the quality “performance” 

rather, than to the mean “performance” of a group.  

     For applying the GPA method to the data of our example let us denote by nA, nB, nC, nD 

and nE the number of the industry’s customers who belong to the above described categories 
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A, B, C, D and E respectively and by n the total number of its customers. Then the GPA is 

calculated by the formula GPA = 
2 3 4D C B An n n n

n

  
. Obviously we have that 0   GPA   4.  

      In our case, using the data of Table 1 it is easy to check that both the GPA’s of the 

customers of the L Class and of the R Class are equal to 
43

17
2.529. This is a satisfactory 

value for the GPA, since it is close enough to 4. Thus, according to the GPA method the 

industry’s customers of the L Class and of the R Class are equally satisfied with their new 

cars.  

II) Application of the COG method (FL approach) 

We consider as universal set the set U = {A, B, C, D, E} of the customers’ categories. 

We are going to represent the sets L and R of the customers who purchased the L Class and R 

Class respectively as fuzzy sets in U. For this, we define the membership function m: U 

[0, 1] for both sets L and R in terms of the frequencies, i.e. by y = m(x) =  xn

n
, where nx 

denotes the number of customers belonging to the category x in U and n denotes the total 

number of the customers of the corresponding set.          

Then, from Table 2 it turns easily out that L and R can be written as fuzzy sets in U in 

the form
‡
: R = {(A, 

6

17
), (B, 

4

17
), (C, 

2

17
), (D, 

3

17
), (E,  

2

17
)}                    (5) 

 and  

L = {(A, 
4

17
), (B, 

6

17
), (C, 

3

17
), (D, 

3

17
), (E, 

1

17
)}                                       (6)   

respectively 

Next, we correspond to each xU an interval of values from a prefixed numerical 

distribution as follows: E   [0, 1), D  [1, 2), C  [2, 3), B   [3,4), A   [4, 5]. This 

actually means that we replace U with a set of real intervals. Consequently, we have that  y1 = 

m(x) = m(E) for all x in [0,1), y2 = m(x) = m(D} for all x in [1,2), y3 = m(x) = m(C) for all x in 

[2, 3), y4 = m(x) = m(B) for all x in [3, 4) and y5 = m(x) = m(A) for all x in [4,5). Since the 

membership values of the elements of U in L and R have been defined in terms of the 

corresponding frequencies, we obviously have that  

5

1

i

i

y


 = m(A) + m (B) + m(C) + m(D) + m(E) = 1                 (7) 

We are now in position to construct the graph of the membership function y = m(x), 

which has the form of the bar graph shown in Figure 2.  From Figure 2 one can easily observe 

that the level’s area, say F, contained between the bar graph of y = m(x) and the OX axis is 

                                            

‡
  We recall that a fuzzy set can be symbolically written in several forms, e.g. as a symbolic sum (see section 3), 

as a set of ordered pairs (see above), etc. 
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equal to the sum of the areas of the five rectangles Fi , i =1, 2, 3, 4, 5. The one side of each 

one of these rectangles has length 1 unit and lies on the OX axis.  

 
Figure 2:  Bar graphical data representation 

As it is well known from Mechanics, the coordinates (xc, yc) of the COG, say Fc, of the 

level’s section F can be calculated by the formulas:     

,F F
c c

F F

xdxdy ydxdy

x y
dxdy dxdy

 
 

 
                                         (8)  

  

Taking into account the data of Figure 2 and equation (7) it is straightforward to check 

(see, for example, section 3 of [15]) that formulas (8) in our case can be transformed to the 

form: 

                              (9) 

Then, using elementary algebraic inequalities it is easy to check that there is a unique 

minimum for yc corresponding to COG Fm (
2

5 ,
10

1 ) ([15], section3). Further, the ideal case is  

 

 

1 2 3 4 5

2 2 2 2 2

1 2 3 4 5

1
3 5 7 9 ,

2

1

2

c

c

x y y y y y

y y y y y y

    

    
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when y1=y2=y3=y4=0 and y5=1. Then from formulas (9) we get that xc = 
2

9  and yc = 
2

1 . 

Therefore the COG in this case is the point Fi (
2

9 , 
2

1 ). On the other hand the worst case is 

when y1=1 and y2=y3=y4= y5=0. Then from formulas (9) we find that the COG is the point 

Fw (
2

1 , 
2

1 ). Therefore the COG Fc of the level’s section F lies in the area of the triangle Fw Fm 

Fi . 

     

Then by elementary geometric observations one can obtain the following criterion 

([15], section 3):  

 Among the two groups of the industry’s customers the group with the biggest xc 

corresponds to the customers who are better satisfied from their new cars. 

 If the two groups have the same xc  2.5, then the group with the higher yc corresponds 

to the customers who are better satisfied. 

 If the two groups have the same xc < 2.5, then the group with the lower yc                     

corresponds to the customers who are better satisfied. 

 

Substituting in formulas (9) the values of yi’s taken from the forms (5) and (6) of the 

fuzzy sets L and R respectively it is straightforward to check that the coordinate xc of the 

COG for both L and R is equal to 
103

34
 3.029 > 2.5. However, the coordinate yc is equal to 

69

578
 for L and to 

71

578
 for Rc. Therefore according to our criterion stated above, and in 

contrast to the conclusion obtained by calculating the corresponding means, the customers 

who purchased the R Class were better satisfied from their new cars. 

 

5. Conclusions and Discussion  
 

The following conclusions can be drawn from the investigation performed in this paper:  

 We developed a Markov chain model for a mathematical description of the DM 

process. This model is an application of the Probability theory, which is based on 

principles of the classical bivalent logic.  

 However, frequently in our everyday life a DM problem is expressed in an ambiguous 

way involving a degree of uncertainty. The process of DM under fuzzy conditions was 

also fully described in this paper through two representative examples. 

 The verification of a taken decision is a step of the DM process, which is usually 

examined separately from its other steps, because it belongs to areas which, due to 

their depth and importance for the administrative rationalism, have become 

autonomous. In this paper we examined the verification of a taken decision both by 

traditional (statistical) methods (calculation of the mean – GPA) and by applying the 

COG deffuzification technique. 
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 The application of the above - three in total - methods for verifying a decision resulted 

to different conclusions in all cases! However, this is not embarrassing at all, since, in 

contrast to the calculation of the mean which focuses to the mean “performance” of a 

given group of individuals, the GPA and the COG methods focus on its quality 

“performance” by assigning weight coefficients to the higher scores obtained by these 

individuals. Further the COG method is more “sensitive” for the higher scores than the 

GPA does, since it assigns higher weight coefficients to them. Thus, it is suggested to 

the user of the above methods to choose the one that fits better to its personal criteria 

of goals.  

We shall close with a brief discussion on our plans for future research on the subjects 

covered in this paper. First, there is a need to apply the methods developed in this paper on 

more real DM problems in order to get safer statistical results with respect to their 

applicability and their creditability in real situations. 

Concerning our Markov model for the DM process, we must notice that we have applied 

similar models in the past to describe several situations in the areas of Management, 

Education and Artificial Intelligence (e.g. see book [18] and the relevant references appearing 

in it). Therefore it looks interesting and useful to search in future for more real situations 

where one could apply similar Markov models for their mathematical description and 

evaluation. 

Finally, the special form of the COG defuzzification technique that we have used in this 

paper for examining the verification of a taken decision it turns out to be a general assessment 

method [13], that could be utilized in many other real situations characterized by a degree of 

ambiguity and/or uncertainty, apart from those where we have already applied it ([10-17], 

etc).    
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