
Egyptian Computer Science Journal Vol. 39 No. 1 January 2015 ISSN-1110-2586

-25-

Accelerated Bat Algorithm for Solving Integer Programming Problems

Ahmed Fouad Ali

Computer Science Department, Faculty of Computers and Information

Suez Canal University, Ismailia, Egypt.

ahmed fouad@ci.suez.edu.eg

Abstract

In this paper, we present a new hybrid algorithm for solving integer-programming

problems. The proposed algorithm is called accelerated bat algorithm (ABATA). In ABATA,

we try to accelerate the search process by invoking the Nelder-Mead method as a local search

method in order to refine the best obtained solution at each iteration. The bat algorithm has a

good ability to perform a wide exploration and a deep exploitation search, while the Nelder-

Mead method has a powerful performance as a local search method and can enhance the

exploitation ability of the proposed algorithm. The general performance of ABATA is tested

on seven integer-programming problems and compared against four benchmark algorithms.

The experimental results indicate that ABATA is a promising algorithm and can obtain a

global optimal solution or near optimal solution in reasonable time.

Keyboard: Bat algorithm, Nelder-Mead method, Integer programming problems,

Optimization problems.

1. Introduction

In the past two decades, many meta-heuristic algorithms have been applied to solve

global optimization problems, these algorithms are inspired from the behavior of a group of

social organisms. They are called nature inspired algorithms or swarm intelligence (SI)

algorithms, such as Ant Colony Optimization (ACO) [4], Artificial Bee Colony (ABC) [10],

Particle Swarm Optimization (PSO) [11], Bacterial foraging [19], Bat Algorithm (BA) [30],

Bee Colony Optimization (BCO) [24], Wolf search [23], Cat swarm [3], Cuckoo search [29],

Firefly algorithm (FA) [28], [29], Fish swarm/school [14], etc. SI algorithms have been

widely used to solve unconstrained and constrained problems and their applications. However

they have been applied in a few works to solve integer-programming problems, although the

variety of many real life applications for this problem such as warehouse location problem,

VLSI (very large scale integration) circuits design problems, robot path planning problems,

scheduling problem, game theory, engineering design problems, [5], [6], [17], [31].

Bat algorithm (BA) is a promising nature inspired algorithm inspired from the

echolocation behavior of the microbats [30]. BA has a good capability to balance the global

exploration and the local exploitation during the search process. In this work, we propose a

new hybrid bat algorithm and Nelder-Mead method by combining the bat algorithm with its

powerful capability of performing a wide exploration and a deep exploitation and the Nelder-

Mead method as a local search method to refine the best-obtained solution at each iteration.

The proposed algorithm is called accelerated bat algorithm (ABATA). Invoking the Nelder-

Egyptian Computer Science Journal Vol. 39 No. 1 January 2015 ISSN-1110-2586

-26-

Mead method in the proposed algorithm can accelerate the convergence instead of running the

algorithm more iteration without any improvement in the results.

Branch and Bound (BB) is one of the most famous exact integer programming

algorithm [1], [13], [15], however it suffer from high complexity, since they explore a

hundred of nodes in a big tree structure when solving a large scale problems. Recently, there

are some efforts to apply some of swarm intelligence algorithms to solve integer

programming problems such as ant colony algorithm [8], [9], artificial bee colony algorithm

[2], [25], particle swarm optimization algorithm [12], [18], [20], cuckoo search algorithm [26]

and firefly algorithm [27].

The main objective of this paper is to produce a new hybrid SI algorithm by combining

the bat algorithm with the Nelder-Mead method in order to solve integer-programming

problems [7]. In the proposed algorithm, we try to overcome the main problem of applying

other SI algorithm, which is consuming expensive computation time.

Moreover, the general performance of the proposed ABATA is tested on well-known

benchmark functions and has been compared against different algorithms. The experimental

results indicate that ABATA is a promising algorithm and outperforms the other algorithms.

The rest of this paper is organized as follow. In Section 2, we present an overview on the

related work for the proposed algorithm. Section 3 describes the proposed ABATA. Section

4 discusses the general performance of the proposed algorithm and reports the comparative

experimental results on the benchmark functions. Finally, the conclusion makes up Section 5.

2. Related Work

In this section, we present an overview on the related work for the proposed algorithm

and we highlight the definition of the integer-programming problem and the Nelder-Mead

method with the main structure of its algorithm as follow.

2.1 The Definition of the Integer Programming Problem

An integer-programming problem is a mathematical optimization problem in which all

of the variables are restricted to be integers. The unconstrained integer-programming problem

can be defined as follow.

𝒎𝒊𝒏 𝒇(𝒙), 𝒙 ∈ 𝑺 ⊆ ℤ𝒏, (1)

Where ℤ is the set of integer variables, S is a not necessarily bounded set.

2.2 Nelder-Mead Method

In 1965, Nelder and Mead proposed the Nelder-Mead method (NM) [16], which is one

of the most popular derivative-free nonlinear optimization algorithms. The NM method starts

with 𝑛 + 1 points (vertices) 𝑥1 , 𝑥2 , … , 𝑛 + 1, these vertices are evaluated, ordered and re-

labeled in order to assign the best point and the worst point. In minimization problems, the 𝑥1

is considered as the best vertex or point if it has the minimum value of the objective function,

Egyptian Computer Science Journal Vol. 39 No. 1 January 2015 ISSN-1110-2586

-27-

while the worst point 𝑥(𝑛+1) with the maximum value of the objective function. At each

iteration, new points are computed, along with their function values, to form a new simplex.

Four scalar parameters must be specified to define a complete Nelder-Mead method, these

parameters are reported in Table 1 and are chosen to satisfy 𝜌 > 0, 𝜒 > 1, 0 < 𝜁 < 1, and

0 < 𝜎 < 1.

The main steps of the Nelder-Mead method are shown in Algorithm 1 and the

summarization of these steps is shown as follow.

 Step 1. The algorithm of the Nelder-Mead method starts with 𝑛 + 1 vertices 𝑥𝑖, 𝑖 = 1,… , 𝑛 +
1, which are evaluated and ordered according to their fitness function.

Step 2. The refection process starts by computing the reflected point 𝑥𝑟 = 𝜌 (𝑥 ̅ −

 𝑥(𝑛+1)), where �̅� is the average of all points except the worst and 𝜌 is a coefficients

of reflection parameter, 𝜌 > 0.

Step 3. If the reflected point 𝑥𝑟 is lower than the 𝑛𝑡ℎ point 𝑓(𝑥𝑛) and greater than the best

point 𝑓(𝑥1), then the reflected point is accepted and the iteration is terminated.

Step 4. If the reflected point is better than the best point, then the algorithm starts the

expansion process by calculating the expanded point 𝑥𝑒, where 𝑥𝑒 = 𝜒 (𝑥𝑟 − 𝑥 ̅), is

an expansion parameter and 𝜒 > 1.

Step 5. If 𝑥𝑒 is better than the reflected point 𝑛𝑡ℎ, the expanded point 𝑥𝑒 is accepted,

otherwise the reflected point is accepted and the iteration will terminated.

Step 6. If the reflected point 𝑥𝑟 is greater than the 𝑛𝑡ℎ point 𝑥𝑛, the algorithm starts a

contraction process by calculating an outside contracted point 𝑥𝑜𝑐, where 𝑥𝑜𝑐 = �̅� +
 𝜁 (𝑥𝑟 − �̅�) or an inside contracted point 𝑥𝑖𝑐 by calculating an inside contracted point

𝑥𝑖𝑐, where 𝑥𝑖𝑐 = �̅� + 𝜁 (𝑥𝑛+1 − �̅�), 𝜁 is a contraction parameter and 0 < 𝜁 < 1.

The selection of the outside contraction process and the inside contraction process is

depending on the values of the reflected point 𝑥𝑟 and the 𝑛𝑡ℎ point 𝑥𝑛.

Step 7. If the outside contracted point 𝑥𝑜𝑐 or the inside contracted point 𝑥𝑖𝑥 is greater than the

reflected point 𝑥𝑟, the shrinkage process is starting by calculating the shrink point. In

the shrink process, the points are evaluated and the new vertices of simplex at the next

iteration will be �̀�2, … , �̀�𝑛+1, where �̀� = 𝑥1 + 𝜎 (𝑥𝑖 − 𝑥1), 𝑖 = 2,… , 𝑛 + 1, 𝜎 is a

shrinkage parameter and 0 < 𝜎 < 1 .

Algorithm 1 The Nelder-Mead Algorithm

1: Let 𝑥𝑖 denote the list of vertices in the current simplex, 𝑖 = 1,… , 𝑛 + 1.
2: Order. Order and re-label the 𝑛 + 1 vertices from lowest function value 𝑓(𝑥1) to highest function value

𝑓(𝑥𝑛+1) so that 𝑓(𝑥1) ≤ 𝑓(𝑥2) ≤ … ≤ 𝑓(𝑥𝑛+1).

3: Reflection. Compute the refection point 𝑥𝑟 by 𝑥𝑟 = �̅� + 𝜌 (�̅� − 𝑥𝑛+1), where �̅� is the centroid of the 𝑛 best

points, �̅� = ∑(𝑥𝑖 /𝑛), 𝑖 = 1,… , 𝑛.
 IF 𝑓(𝑥1) ≤ 𝑓(𝑥𝑟) < 𝑓(𝑥𝑛) Then

 Replace 𝑥𝑛+1 with the reflected point 𝑥𝑟 and go to Step 7.

 End IF

4: Expansion.

 IF 𝑓(𝑥𝑟) < 𝑓(𝑥1) Then

 Compute the expansion point, 𝑥𝑒 by 𝑥𝑒 = �̅� + 𝜒(𝑥𝑟 − �̅�).

 End IF

 IF 𝑓(𝑥𝑒) < 𝑓(𝑥𝑟) Then

 Replace 𝑥𝑛+1 with 𝑥𝑒 and go to Step 7.

 Else

Egyptian Computer Science Journal Vol. 39 No. 1 January 2015 ISSN-1110-2586

-28-

 Replace 𝑥𝑛+1 with 𝑥𝑟 and go to Step 7.

 End IF
5: Contraction.

 IF 𝑓(𝑥𝑟) − 𝑓(𝑥𝑛) Then

 Perform a contraction between �̅� and the best among 𝑥𝑛+1 and 𝑥𝑟 .

 End IF

 IF 𝑓(𝑥𝑛) ≤ 𝑓(𝑥𝑟) < 𝑓(𝑥𝑛+1) Then

 Calculate 𝑥𝑜𝑐 = �̅� + 𝜁(𝑥𝑟 − �̅�) Outside contract

 End IF

 IF 𝑓(𝑥𝑛) ≤ 𝑓(𝑥𝑟) < 𝑓(𝑥𝑛+1) Then

 Replace 𝑥𝑛+1 with 𝑥𝑜𝑐 and go to Step 7.

 Else

 Go to Step 6.

 End IF

 IF 𝑓(𝑥𝑟) ≥ 𝑓(𝑥𝑛+1) Then

 Calculate 𝑥𝑖𝑐 = �̅� + 𝜁(𝑥𝑛+1 − �̅�) Inside contract

 End IF

 IF 𝑓(𝑥𝑖𝑐) ≥ 𝑓(𝑥𝑛+1) Then

 Replace 𝑥𝑛+1 with 𝑥𝑖𝑐 and go to Step 7.

 Else

 Go to Step 6.

 End IF

6: Shrink. Evaluate the 𝑛 new vertices, �́� = 𝑥1 + 𝜎(𝑥𝑖 − 𝑥1), 𝑖 = 2, … , 𝑛 + 1.
 Replace the vertices 𝑥2, … , 𝑥𝑛+1 with the new vertices 𝑥2

′ , … , 𝑥𝑛+1
′ .

7: Stopping Condition. Order and re-label the vertices of the new simplex as

 𝑥1, 𝑥2, … , 𝑥𝑛+1 such that 𝑓(𝑥1) ≤ 𝑓(𝑥2) ≤ ⋯ ≤ 𝑓(𝑥𝑛+1)

 IF 𝑓(𝑥𝑛+1) − 𝑓(𝑥1) < 𝜖 Then

 Stop, where 𝜖 > 0 is a small-predetermined tolerance.

 Else

 Go to Step 3.

 End IF

2.3. An Overview of the Bat Algorithm

Bat algorithm (BA) is a population based meta-heuristics algorithm developed by Xin-

She Yang in 2010 [30]. BA is based on the echolocation of microbats, which use a type of

sonar (echolocation) to detect prey and avoid obstacles in the dark. The main advantage of the

BA is that it can provide fast convergence at an initial stage by switching from exploration to

exploitation process. However, switching from exploration to exploitation quickly may lead

to stagnation after some initial stage. The main characteristics and steps of the bat algorithm

are presented in Algorithm 2 and can be summarized as follow.

2.3.1. Velocity and Movement of Virtual Bats

In simulation, at iteration 𝑡, each bat in the population moves randomly with a velocity

𝑣𝑖
𝑡 and a position 𝑥𝑖

𝑡. The position of each bat (solution) is evaluated by calculating its fitness

function value 𝑓(𝑥𝑖) and the overall best solution 𝑥∗ is assigned according to this value. The

position 𝑥𝑖 and the velocity 𝑣𝑖 for each solution in the population are adjusted as shown in

Equations 2, 3, 4. Bat algorithm is considered as a frequency-tuning algorithm, since each bat

is randomly assigned a frequency𝑓, 𝑓 ∈ [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥]. The frequency parameter is very

important to balance between the exploration and the exploitation processes in bat algorithm.

Egyptian Computer Science Journal Vol. 39 No. 1 January 2015 ISSN-1110-2586

-29-

In the initial population, each bat is randomly assigned a frequency then these values are

adjusted as shown in Equation 2.

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥
− 𝑓min) 𝛽 (2)

Where 𝛽 ∈ [0,1] is a random vector drawn from a uniform distribution. The initial

velocity and position of each bat in the population are assigned randomly then they are

updated as shown in Equations 3, 4, respectively.

𝑣𝑖
𝑡 = 𝑣𝑖

(𝑡−1)
+ (𝑥𝑖

(𝑡−1)
− 𝑥∗)𝑓𝑖

(3)

Where 𝑥∗
 is the best solution in the population.

𝑥𝑖
𝑡 = 𝑥𝑖

(𝑡−1)
+ 𝑣𝑖

𝑡 (4)

2.3.2. Loudness and Pulse Emission Rate

The loudness parameter 𝐴𝑖 and the pulse emission rate parameter 𝑟𝑖 are very important

parameters in a bat algorithm, since they control and switch between exploration and

exploitation process during the search. The loudness decreases once a bat has found its prey,

while the pulse emission rate increases. The values of loudness have to vary between

 𝐴𝑚𝑎𝑥 and 𝐴𝑚𝑖𝑛, when 𝐴𝑚𝑖𝑛 = 0 means that a bat has found the prey. The value of loudness

can be updated during the search as follow.

𝐴𝑖
(𝑡+1)

= ∝ 𝐴𝑖
𝑡 (5)

Where ∝ is a constant and has the same effect as the cooling factor in simulated

annealing algorithm. In addition, the pulse emission rate parameter can be updated as follow.

𝑟𝑖
𝑡 = 𝑟𝑖

0[1 − exp(−𝛾𝑡)] (6)

 Where 𝛾 is a constant and 𝛾 > 0.

2.3.3 Local Search Method

Each bat (solution) in the population is evaluated by calculating its fitness function

value and the overall best solution is selected as a current best solution 𝑥∗. Once the best

solution is selected, each bat in the population generates a new solution by using a random

walk method as follow.

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝜖 𝐴𝑡 (7)

Where 𝜖 is a random number and 𝜖 ∈ [−1,1], 𝐴𝑡 = < 𝐴𝑖
𝑡 > is the average loudness of

all the bats at the current iteration.

2.3.4. Bat Algorithm

The main steps of the bat algorithm are presented in Algorithm 2 and the description of

it can be summarized as follow.

Egyptian Computer Science Journal Vol. 39 No. 1 January 2015 ISSN-1110-2586

-30-

Algorithm 2 Bat Algorithm

1: Set the initial values of the minimum frequency 𝑓𝑚𝑖𝑛, maximum frequency 𝑓𝑚𝑎𝑥, population size 𝑃𝑆, the

loudness constant 𝛼, the rate of pulse emission constant 𝛾, the initial loudness 𝐴0, the minimum loudness

𝐴𝑚𝑖𝑛, the initial rate of pulse emission 𝑟0 and the maximum number or iterations 𝑀𝑎𝑥𝑖𝑡𝑟.

2: Set 𝑡 = 0.

3: For (𝑖 = 1; 𝑖 < 𝑃𝑆; 𝑖 + +) do

4: Generate the initial bat population 𝑥𝑖
𝑡 randomly.

5: Generate the initial bat velocities 𝑣𝑖
𝑡 randomly.

6: Assign the initial frequency 𝑓𝑖 to each 𝑥𝑖
𝑡.

7: Evaluate the initial population by calculating the objective function 𝑓(𝑥𝑖
𝑡) for each solution in the

 Population.

8: Set the initial values of the pulse rates 𝑟𝑖 and loudness 𝐴𝑖.

9: End For

10:Repeat

11: 𝑡 = 𝑡 + 1.

12: Generate new bat solutions 𝑥𝑖
𝑡 by adjusting frequency as shown in Equation 4.

13: Update the bat velocities 𝑣𝑖
𝑡 as shown in Equations 2, 3.

14: Evaluate the new population by calculating the objective function 𝑓(𝑥𝑖
𝑡) for each solution in the

population

15: Select the best solution 𝑥∗ from the population.

16: IF 𝑟𝑎𝑛𝑑 > 𝑟𝑖 Then

17: Select a solution among the best solutions

18: Generate a local search solution around the selected best solution as shown in Equation 7.

19: End IF

20: Generate a random new solution

21: IF 𝑟𝑎𝑛𝑑 < 𝐴𝑖 & 𝑓((𝑥𝑖
𝑡) < 𝑓(𝑥∗)) Then

22: Accept the new solutions.

23: Increase the rate of pulse emission 𝑟𝑖 and reduce the loudness 𝐴0 as shown in Equations 5, 6.

24: End IF

25: Evaluate the new population by calculating the objective function 𝑓(𝑥𝑖
𝑡) for each solution in the

population.

26: Rank the population and select the best solution 𝑥∗ from the population.

27: Until (𝑡 < 𝑀𝑎𝑥𝑖𝑡𝑟)

28: Produce the best solution.

 Step 1. The algorithm starts by setting the initial values of its parameters and the main iteration counter is set to

zero (lines 1-2).

 Step 2. The initial population is generated randomly by generating the initial position 𝑥0 and the initial velocity

𝑣0 for each bat (solution) in the population, the initial frequency 𝑓𝑖 is assigned to each solution in the

population, where 𝑓 is generated randomly from [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥]. The initial population is evaluated by

calculating the objective function for each solution in the initial population 𝑓(𝑥𝑖
0) and the values of

pulse rate 𝑟𝑖 and loudness 𝐴𝑖 is initialized, where 𝑟 ∈ [0,1] and 𝐴𝑖 varies from a large 𝐴𝑚𝑎𝑥 to 𝐴𝑚𝑖𝑛

(lines 3-9).

Step 3. The new population is generated by adjusting the position 𝑥𝑖 and the velocity 𝑣𝑖 for each solution in the

population as shown in Equations 2, 3, 4, where 𝛽 ∈ [0,1] is a random vector drawn from a uniform

distribution (lines 12-13).

Step 4. The new population is evaluated by calculating the objective function for each solution and the best

solution 𝑥∗ is selected from the population (lines 14-15).

Step 5. The local search method is applied by using a random walk method as show in Equation 7 in order to

refine the best-found solution at each iteration (lines 16-19).

Step 6. The new solution is accepted with some proximity depending on parameter 𝐴𝑖, the rate of pulse emission

increases and the loudness decreases. The values of 𝐴𝑖 and 𝑟𝑖 are updated as shown in Equations 5 and

6.

Step 7. The new population is evaluated and the best solution is selected from the population. The operations are

repeated until termination criteria satisfied and the overall best solution is produced (lines 25-28).

Egyptian Computer Science Journal Vol. 39 No. 1 January 2015 ISSN-1110-2586

-31-

3. Accelerated Bat Algorithm (ABATA)

In the proposed algorithm, we combine the bat algorithm, which has a good capability

of exploring the search space and the Nelder-Mead method, which is one of the most

important direct search method and has a powerful performance as a local search method. The

proposed algorithm is called Accelerated BAT Algorithm (ABATA). ABATA starts with an

initial population, which is generated randomly and consists of 𝑃𝑆 bats (solutions). These

solutions are updated by moving randomly with a velocity 𝑣𝑖
𝑡 and a position 𝑥𝑖

𝑡. Each solution

is evaluated by calculating its fitness function and the best solution is selected from the

population according to its fitness function value. ABATA uses a Nelder-Mead method as a

local search instead of a random walk method, which is applied in the standard bat algorithm

in order to refine the best solution found so far at each iteration. The structure of ABATA is

shown in Algorithm 3 and more details of ABATA structure are given bellow.

3.1. ABATA Algorithm

The formal detailed description of ABATA is given in the Algorithm 3 and we can

summarize the main steps of it as follow.
Algorithm 3 ABATA Algorithm

1: Set the initial values of the minimum frequency 𝑓𝑚𝑖𝑛, maximum frequency 𝑓𝑚𝑎𝑥, population size 𝑃𝑆, the

loudness constant 𝛼, the rate of pulse emission constant 𝛾, the initial loudness 𝐴0, the minimum loudness

𝐴𝑚𝑖𝑛, the initial rate of pulse emission 𝑟0 and the maximum number or iterations 𝑀𝑎𝑥𝑖𝑡𝑟.

2: Set 𝑡 = 0.

3: For (𝑖 = 1; 𝑖 < 𝑃𝑆; 𝑖 + +) do

4: Generate the initial bat population 𝑥𝑖
𝑡 randomly.

5: Generate the initial bat velocities 𝑣𝑖
𝑡 randomly.

6: Assign the initial frequency 𝑓𝑖 to each 𝑥𝑖
𝑡.

7: Evaluate the initial population by calculating the objective function 𝑓(𝑥𝑖
𝑡) for each solution in the

 Population.

8: Set the initial values of the pulse rates 𝑟𝑖 and loudness 𝐴𝑖.

9: End For

10:Repeat

11: 𝑡 = 𝑡 + 1.

12: Generate new bat solutions 𝑥𝑖
𝑡 by adjusting frequency as shown in Equation 4.

13: Update the bat velocities 𝑣𝑖
𝑡 as shown in Equations 2, 3.

14: Evaluate the new population by calculating the objective function 𝑓(𝑥𝑖
𝑡) for each solution in the

population

15: Select the best solution 𝑥∗ from the population.

16: IF 𝑟𝑎𝑛𝑑 > 𝑟𝑖 Then

17: Select a solution among the best solutions

18: Refine the best obtained solution by using Nelder-Mead method as shown in Algorithm 1.

19: End IF

20: Generate a random new solution

21: IF 𝑟𝑎𝑛𝑑 < 𝐴𝑖 & 𝑓((𝑥𝑖
𝑡) < 𝑓(𝑥∗)) Then

22: Accept the new solutions.

23: Increase the rate of pulse emission 𝑟𝑖 and reduce the loudness 𝐴0 as shown in Equations 5, 6.

24: End IF

25: Evaluate the new population by calculating the objective function 𝑓(𝑥𝑖
𝑡) for each solution in the population

26: Rank the population and select the best solution 𝑥∗ from the population

27: Until (𝑡 < 𝑀𝑎𝑥𝑖𝑡𝑟)

28: Produce the best solution.

Egyptian Computer Science Journal Vol. 39 No. 1 January 2015 ISSN-1110-2586

-32-

Step 1. The parameters of the minimum frequency 𝑓𝑚𝑖𝑛, maximum frequency 𝑓𝑚𝑎𝑥,

population size 𝑃𝑆, the loudness constant 𝐴𝑚𝑖𝑛, the rate of pulse emission constant ,

the initial loudness 𝐴0, the minimum loudness 𝐴𝑚𝑖𝑛, the initial rate of pulse emission

𝑟0, the maximum number or iterations 𝑀𝑎𝑥𝑖𝑡𝑟 and the initial iteration counter are set

to their initial values (lines 1-2).

Step 2. The initial population is generated randomly by generating the initial position 𝑥0 and

the initial velocity 𝑣0 for each bat (solution) in the population, the initial frequency

𝑓𝑖
0 is assigned to each solution in the population. The initial population is evaluated

by calculating the objective function for each solution in the initial population 𝑓(𝑥𝑖
0)

and the values of pulse rate 𝑟𝑖 and loudness 𝐴𝑖 is initialized (lines 3-9).

Step 3. The new population is generated by adjusting the position 𝑥𝑖 and the velocity 𝑣𝑖 for

each solution in the population as shown in Equations 2, 3, 4 (lines 12-13).

Step 4. The new population is evaluated by calculating the objective function for each

solution and the best solution 𝑥∗ is selected from the population (lines 14-15).

Step 5. The Nelder Mead method is applied as shown in Algorithm 1 in order to refine the

best-found solution at each iteration (lines 16-19).

Step 6. The new solution is accepted with some proximity depending on parameter 𝐴𝑖, the

rate of pulse emission increases and the loudness is decreased as shown in Equations

5 and 6. (lines 21-24).

Step 7. The new population is evaluated and the best solution is selected from the population.

The operations are repeated until termination criteria satisfied. Finally, the overall

best solution is produced (lines 25-28).

In order to investigate the correctness of the proposed algorithm, we test it on seven

benchmark functions with known optimal values as shown in Table 2. The proposed

algorithm terminates the search when it reaches to the optimal value or near optimal value as

shown in Subsection 4.1. In the following section, we test the general performance of the

proposed algorithm and compare it with other algorithms to verify from its correctness.

4. Numerical Experiments

The performance of ABATA is tested on seven benchmark functions, which are

reported in Subsection 4.2 and their properties are reported in Table 2. ABATA was

programmed in MATLAB and the results of it are averaged over 50 runs. Before discussing

the results, we present the parameter tuning and performance analysis of ABATA as follows.

4.1. Parameter Setting

Before discussing the results, we summarize the setting of ABATA parameters and

there values as shown in Table 1.

Egyptian Computer Science Journal Vol. 39 No. 1 January 2015 ISSN-1110-2586

-33-

Table 1. Parameter setting.

Parameters Definitions Values

𝑃𝑆 population size 20

𝑓𝑚𝑖𝑛 minimum frequency 0

𝑓𝑚𝑎𝑥 maximum frequency 5

𝐴0 initial loudness 1

𝑟0 initial pulse emission rate 0.5

𝛼 loudness constant 0.95

𝛾 rate of pulse emission constant 0.9

𝜌 reflection parameter 1

𝜒 expansion parameter 2

𝜁 contraction parameter 0.5

𝜎 shrinkage parameter 0.5

𝑀𝑎𝑥𝑖𝑡𝑟 maximum number of iteration 1000

𝑀𝑎𝑥𝑖𝑡 no. of maximum iterations used in NM method 100 𝑑

𝑁𝑒𝑙𝑖𝑡𝑒 no. of best solution for local search 1

These values are based on the common setting in the literature or determined through

our preliminary numerical experiments. These parameters are categorized in the following groups.

 Population size parameter. The experimental tests show that the best population size

is 𝑃𝑆 = 20, increasing this number will increase the value of the evaluation function

without any improvement in the obtained results.

 Frequency parameters. ABATA can be considered as a frequency-tuning algorithm.

Each bat (solution) is assigned a random frequency 𝑓, where𝑓 ∈ [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥]. The

experimental results show that the best values of 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 are set to 0, 5, respectively.

 Loudness and pulse emission rate parameters. The values of loudness parameter 𝐴

and pulse emission rate 𝑟 are very important to control the wide exploration and deep

exploitation process. The experimental results show that the best initial values for the

parameters 𝐴0 and 𝑟0 are set to 1 and 0.5, respectively. The values of the parameters 𝐴

and 𝑟 are updated as shown in Equations 5, 6. The parameter 𝛼 is similar to the cooling

factor in simulated annealing. The best values of the parameters 𝛼 and 𝛾 are set to 0.95

and 0.9, respectively.

 Local search parameters. ABATA uses a Nelder-Mead method as a local search

method starting from 𝑁𝑒𝑙𝑖𝑡𝑒 best solutions, we set 𝑁𝑒𝑙𝑖𝑡𝑒 = 1. The experimental results

show that the best parameter values of the Nelder-Mead method are 𝜌 = 1, 𝜒 = 2,

𝜁 = 0.5, 𝜎 = 0.5 and the maximum number of iterations used in the Nelder-Mead

method is 100 𝑑, where d is a problem dimension.

 Termination parameters. The main termination criterion in ABATA is that the

maximum number of iterations is set to 1000. However, there are other two termination

criteria in order to make a fair comparison with other algorithms. The first termination

criterion is if | 𝑓𝑏𝑒𝑠𝑡 − 𝑓𝑚𝑖𝑛| < 𝜀, where 𝑓𝑏𝑒𝑠𝑡 and 𝑓𝑚𝑖𝑛 represent the best solution

found by the algorithm and the global minimum, respectively, the value of 𝜀 is set to

10
-4

. The second termination criterion is that the maximum evaluation function value is

set to 20,000.

Egyptian Computer Science Journal Vol. 39 No. 1 January 2015 ISSN-1110-2586

-34-

4.2. Integer Programming Optimization Test Problems

ABATA is tested on seven benchmark integer-programming problems (𝑓1 − 𝑓7) and

compared against different algorithms in order to investigate its performance when applied to

solve integer-programming problems. The properties of the benchmark functions (function

number, dimension of the problem, problem bound and the global optimal of each problem)

are listed in Table 2 and the functions with their definitions are reported as follows.

Test problem 1 [22] This problem is defined by

 𝑓1(𝑥) = ‖𝑥‖1 = |𝑥1| + ⋯+ |𝑥𝑑|,

Test problem 2 [22] This problem is defined by

𝑓2(𝑥) = 𝑥𝑇𝑥 = [𝑥1 … 𝑥𝑑] [

𝑥1

⋮
𝑥𝑑

],

Test problem 3 [6] This problem is defined by

 𝑓3(𝑥) = −[15 27 36 18 12]𝑥

 + 𝑥𝑇

[

35 −20 −10 32 −10
−20 40 −6 −31 32
−10 −6 11 −6 −10
32 −31 −6 38 −20

−10 32 −10 −20 31]

𝑥,

Test problem 4 [6] This problem is defined by

 𝑓4(𝑥) = (9𝑥1
2 + 2𝑥2

2 − 10)2 + (3𝑥1 + 4𝑥2
2 − 7)2,

Test problem 5 [6] This problem is defined by

 𝑓5(𝑥) = (𝑥1 + 10𝑥2)
2 + 5(𝑥3 − 𝑥4)

2 + (𝑥2 − 2𝑥3)
4 + 10(𝑥1 − 𝑥4)

4,

Test problem 6 [21]

This problem is defined by

 𝑓6(𝑥) = 2 𝑥1
2 + 3𝑥2

2 + 4𝑥1𝑥2 − 6𝑥1 − 3𝑥2,

Test problem 7 [6] This problem is defined by

 𝑓7(𝑥) = −3803.84 − 138.08𝑥1 − 232.92𝑥2 + 123.08𝑥1
2 + 203.64𝑥2

2 + 182.25𝑥1𝑥2,

Table 2. The properties of the Integer programming test functions.

Function Dimension Bound Optimal

𝑓1 5 [−100 100] 0

𝑓2 5 [−100 100] 0

𝑓3 5 [−100 100] -737

𝑓4 2 [−100 100] 0

𝑓5 4 [−100 100] 0

𝑓6 2 [−100 100] -6

𝑓7 2 [−100 100] -3833.12

Egyptian Computer Science Journal Vol. 39 No. 1 January 2015 ISSN-1110-2586

-35-

4.3. The General Performance of ABATA with Integer Programming Problems

The first test to investigate the general performance of the proposed algorithm with the

integer programming problems has been applied by plotting the values of function values

versus the number of iterations as shown in Figure 1 for three-test functions 𝑓3, 𝑓4, 𝑓7. The

results in Figure 1 show that the function values of ABATA are rapidly decreases as the

number of iterations increases and the hybridization between the bat algorithm and the

Nelder-Mead method can accelerate the search and help the algorithm to obtain the optimal or

near optimal solution in reasonable time.

Fig. 1. The general performance of ABATA with integer programming problems.

4.4. The Efficiency of ABATA with Integer Programming Problems

The second test in order to verify the efficiency of ABATA, has been applied by

comparing the proposed ABATA against the standard BA using the same BA parameters and

the same termination criteria. The results are shown in Figure 2. The solid line refers to

ABATA results, while the dotted line refers to the standard BA results. The results in Figure 2

represent the general performance of ABATA and the standard BA on four functions

𝑓1, 𝑓2, 𝑓5, 𝑓6 by plotting the values of function values versus the number of iterations. Figure 2

shows that the function values are rapidly decrease as the number of iterations increases for

ABATA results than those of the standard BA. We can conclude from Figures 1, 2 that the

combination between the bat algorithm and the Nelder-Mead method is effective and

accelerate the convergence of the proposed algorithm.

Egyptian Computer Science Journal Vol. 39 No. 1 January 2015 ISSN-1110-2586

-36-

Fig. 2. The efficiency of ABATA with integer programming problems.

4.5. ABATA and Other Algorithms

ABATA is compared against four benchmark algorithms (particle swarm optimization

with different variants) in order to verify of the efficiency of the proposed algorithm. Before

discussing the comparison results of all algorithms, we present a brief description about the

comparative four algorithms [20] as follows.

 RWMPSOg. RWMPSOg is a RandomWalk Memetic Particle Swarm Optimization

(with global variant), which combines the particle swarm optimization with random

walk with direction exploitation by applying the random walk method in the overall best

global solution.

 RWMPSOl. RWMPSOl is a Random Walk Memetic Particle Swarm Optimization

(with local variant), which combines the particle swarm optimization with random walk

with direction exploitation by applying the random walk method in the local best

solution.

 PSOg. PSOg is a standard particle swarm optimization with global variant without local

search method.

 PSOl. PSOl is a standard particle swarm optimization with local variant without local

search method.

4.5.1. Comparison between RWMPSOg, RWMPSOl, PSOg, PSOl and ABATA.

 In this subsection, we present the comparison results between ABATA and the other

algorithms. The four comparative algorithms are tested on seven benchmark functions, which

are reported in Subsection 4.2. The results of the comparative algorithms are taken from their

original papers [20]. The minimum (min), maximum (max), average (Mean), standard

deviation (St.D) and Success rate (%Suc) of the evaluation function values are reported over

50 runs and reported in Table 3. The run is considered success if the algorithm reached to the

Egyptian Computer Science Journal Vol. 39 No. 1 January 2015 ISSN-1110-2586

-37-

global minimum of the solution within an error of 10
-4

 before the 20,000 function evaluation

value. The best results between the comparative algorithms are reported with boldface text.

The results in Table 3 show that ABATA is successes in all runs and obtains the objective

value of each function faster than the other algorithms.

Table 3. Experimental results of function evaluation for 𝒇𝟏 − 𝒇𝟕 test problems

Function Algorithm Min Max Mean St.D Suc

𝑓1 RWMPSOg 17,160 74,699 27,176.3 8657 50

 RWMPSOl 24,870 35,265 30,923.9 2405 50

 PSOg 14,000 261,100 29,435.3 42,039 34

 PSOl 27,400 35,800 31,252 1818 50

 ABATA 1005 1225 1073.75 102.17 50

𝑓2 RWMPSOg 252 912 578.5 136.5 50

 RWMPSOl 369 1931 773.9 285.5 50

 PSOg 400 1000 606.4 119 50

 PSOl 450 1470 830.2 206 50

 ABATA 425 645 511.25 98.773 50

𝑓3 RWMPSOg 361 41,593 6490.6 6913 50

 RWMPSOl 5003 15,833 9292.6 2444 50

 PSOg 2150 187,000 12,681 35,067 50

 PSOl 4650 22,650 11,320 3803 50

 ABATA 202 4512 644.7 1358.85 50

𝑓4 RWMPSOg 76 468 215 97.9 50

 RWMPSOl 73 620 218.7 115.3 50

 PSOg 100 620 369.6 113.2 50

 PSOl 120 920 390 134.6 50

 ABATA 104 150 123.5 19.63 50

𝑓5 RWMPSOg 687 2439 1521.8 360.7 50

 RWMPSOl 675 3863 2102.9 689.5 50

 PSOg 680 3440 1499 513.1 43

 PSOl 800 3880 2472.4 637.5 50

 ABATA 656 1546 1059.25 381.02 50

𝑓6 RWMPSOg 40 238 110.9 48.6 50

 RWMPSOl 40 235 112 48.7 50

 PSOg 80 350 204.8 62 50

 PSOl 70 520 256 107.5 50

 ABATA 80 125 101.25 20.15 50

𝑓7 RWMPSOg 72 620 242.7 132.2 50

 RWMPSOl 70 573 248.9 134.4 50

 PSOg 100 660 421.2 130.4 50

 PSOl 100 820 466 165 50

 ABATA 80 425 187.5 159.60 50

Egyptian Computer Science Journal Vol. 39 No. 1 January 2015 ISSN-1110-2586

-38-

5. Conclusion

In this paper, a new hybrid algorithm has been proposed in order to solve integer-

programming problems by combining the bat algorithm with the Nelder-Mead method. The

proposed algorithm is called accelerated bat algorithm (ABATA). ABATA has a good ability

to perform a wide exploration and a deep exploitation. Invoking the Nelder-Mead method as a

local search method in ABATA accelerate the search by refining the best obtained solution at

each iteration. ABATA has been intensely tested on seven integer-programming problems and

compared against other 4 algorithms in order to test its performance for solving integer

programming problems. The numerical results indicate that the proposed ABATA is a

promising algorithm and suitable to find a global optimal solution or near optimal solution in

reasonable time.

References

[1]. B. Borchers and J.E. Mitchell, "Using an Interior Point Method In a Branch and Bound

Algorithm For Integer Programming", Technical Report, Rensselaer Polytechnic

Institute, July 1992.

[2]. N. Bacanin, M. Tuba, "Artificial Bee Colony (ABC) Algorithm for Constrained

Optimization Improved with Genetic Operators", Studies in Informatics and Control,

Vol. 21, Issue 2, pp. 137-146, 2012.

[3]. S.A. Chu, P.-W. Tsai, and J.-S. Pan, "Cat swarm optimization", Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 4099 LNAI:854-858, 2006.

[4]. M. Dorigo, "Optimization, Learning and Natural Algorithms", Ph.D. Thesis, Politecnico

di Milano, Italy, 1992.

[5]. A. R. Fletcher, "Practical method of optimization", Vol.1 & 2, John Wiley and Sons, 1980.

[6]. Glankwahmdee, J.S. Liebman and G.L. Hogg, "Unconstrained discrete nonlinear

programming", Engineering Optimization, 4, 95-107, 1979.

[7]. F.S. Hillier and G. J. Lieberman, "Introduction to operations research", MCGraw-Hill, 1995.

[8]. R. Jovanovic, M. Tuba, "An ant colony optimization algorithm with improved

pheromone correction strategy for the minimum weight vertex cover problem", Applied

Soft Computing, Vol. 11, Issue 8, pp. 53605366, 2011.

[9]. R. Jovanovic, M. Tuba, "Ant Colony Optimization Algorithm with Pheromone

Correction Strategy for Minimum Connected Dominating Set Problem", Computer

Science and Information Systems (ComSIS), Vol. 9, Issue 4, Dec 2012.

[10]. D. Karaboga and B. Basturk, "A powerful and e_cient algorithm for numerical function

optimization", artificial bee colony (abc) algorithm. Journal of global optimization,

39(3):459-471, 2007.

[11]. J. Kennedy, RC. Eberhart, "Particle Swarm Optimization", Proceedings of the IEEE

International Conference on Neural Networks, Vol 4, pp 19421948, 1995.

Egyptian Computer Science Journal Vol. 39 No. 1 January 2015 ISSN-1110-2586

-39-

[12]. E.C. Laskari, K.E. Parsopoulos, M.N. Vrahatis, "Particle Swarm Optimization for

Integer Programming", Proceedings of the IEEE 2002 Congress on Evolutionary

Computation, Honolulu (HI), pp. 1582-1587, 2002.

[13]. E.L. Lawler and D.W. Wood, "Branch and Bound Methods", A Survey, Operations

Research, Vol. 14, pp. 699-719, 1966.

[14]. X.L. Li, Z.J. Shao, and J.X. Qian, "Optimizing method based on autonomous animates

Fish-swarm algorithm", Xitong Gongcheng Lilun yu Shijian/System Engineering

Theory and Practice, 22(11):32, 2002.

[15]. V.M. Manquinho, J.P. Marques Silva, A.L. Oliveira and K.A. Sakallah, "Branch and

Bound Algorithms for Highly Constrained Integer Programs", Technical Report,

Cadence European Laboratories, Portugal, 1997.

[16]. JA. Nelder and R. Mead, "A simplex methods for function minimization", Computer

journal 7:308-313, 1965.

[17]. G. L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd, editor, "Handbooks in OR &

MS", volume 1. Elsevier, 1989.

[18]. K.E. Parsopoulos and M.N. Vrahatis, "Unified particle swarm optimization for tackling

operations research problems", in Proceeding of IEEE 2005 swarm Intelligence

Symposium, Pasadena, USA, 53-59, 2005.

[19]. M.K. Passino, "Biomimicry of bacterial foraging for distributed optimization and

control", Control Systems, IEEE 22(3):52-67, 2002.

[20]. Y.G. Petalas, K.E. Parsopoulos. M.N. Vrahatis, "Memetic particle swarm optimization",

Ann oper Res, 156:99-127, 2007.

[21]. S.S. Rao, "Engineering optimization-theory and practice", Wiley: New Delhi, 1994.

[22]. G. Rudolph, "An evolutionary algorithm for integer programming", In: Davidor Y,

Schwefel H-P, Mnner R (eds), pp. 139-148. Parallel Problem Solving from Nature 3, 1994.

[23]. R. Tang, S. Fong, X.S. Yang, and S. Deb, " Wolf search algorithm with ephemeral

memory", In Digital Information Management (ICDIM), 2012 Seventh International

Conference on Digital Information Management, pages 165-172, 2012.

[24]. D. Teodorovic and M. DellOrco, "Bee colony optimization a cooperative learning

approach to complex transportation problems", In Advanced OR and AI Methods in

Transportation: Proceedings of 16th MiniEURO Conference and 10th Meeting of

EWGT (13-16 September 2005).Poznan: Publishing House of the Polish Operational

and System Research, pages 51-60, 2005.

[25]. M. Tuba, N. Bacanin, N. Stanarevic, "Adjusted artificial bee colony (ABC) algorithm

for engineering problems", WSEAS Transaction on Computers, Volume 11, Issue 4, pp.

111-120, 2012.

[26]. M. Tuba, M. Subotic, N. Stanarevic, "Performance of a modified cuckoo search

algorithm for unconstrained optimization problems", WSEAS Transactions on Systems,

Volume 11, Issue 2, pp. 62-74, 2012.

Egyptian Computer Science Journal Vol. 39 No. 1 January 2015 ISSN-1110-2586

-40-

[27]. N. Bacanin, I. Brajevic, M. Tuba, "Firefly Algorithm Applied to Integer Programming

Problems", Recent Advances in Mathematics, 2013.

[28]. X.S. Yang, "Firefly algorithm, stochastic test functions and design optimization",

International Journal of Bio-Inspired Computation, 2(2):78-84, 2010.

[29]. X.S. Yang and S. Deb, "Cuckoo search via levy flights", In Nature & Biologically

Inspired Computing, 2009. NaBIC 2009. World Congress on, pages 210-214. IEEE, 2009.

[30]. X.S. Yang, "A new meta-heuristic bat-inspired algorithm", Nature Inspired Cooperative

Strategies for Optimization (NICSO 2010), pages 6574, 2010.

[31]. S. Zuhe, A. Neumaier and M.C. Eiermann, "Solving Minimax problems by Interval

Methods", BIT, Vol. 30, PP. 742-751, 1990.

