
Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-71-

Extraction of Web Applications Vulnerabilities

Fatma A. El-Licy
Department of Computer and Information Sciences, Institute of Statistical Studies and Researches,

Cairo University, Giza, Egypt.
why2fatma@yahoo.com

Abstract

 Web Security issues plays an important role in the development of real life web
systems. Malicious attacks of web based systems, usually, inflect damages and losses in

finance capitals and may, even, compromise the reputation of those institutes under attack.
Therefore, the security of web applications is an essential issue to be addressed to and be

understood by the application developers. Web applications vulnerability to intrusion and
malicious attacks can be exposed by the application of software testing techniques. The early
discovery of an application’s vulnerabilities, would, normally, assist in rectifying the

application software as well as adjusting the design and implementation for better practice to
avoid such vulnerability.

The objective of this paper is to present an approach to extract vulnerabilities in web
applications code, including both server side (Cookie Poisoning, SQL Injection, Cross-Site
Scripting, CGI Parameters); and client side (Buffer Overflow, Bypass Restrictions on Input

Choices and Hidden Field.)

The presented approach adopted white box code analysis to expose different types of
vulnerabilities to ensure security. A general framework for the methodology of utilizing static

analysis and code slicing verification technique is described. A prototype for the system has
been designed and implemented to evaluate the presented approach. The method, not only,

expose taint code in the web application, but it also, eliminates the false positive results
incurred in most of static analysis-based scanners.

The system applied a proactive approach to provide advices and remedies to fix

potential code vulnerabilities, and to avoid consequence, possible, attacks. The presented
system can, easily, be adapted for any Web developing language; however, it was designed

with a front end compiler for PHP based code.

Keywords: Web applications security, Static analysis, SQL Injection, Cross-Site Scripting,
 Cookie Poisoning.

1. Introduction

 In the context of increased interconnection among information systems and networks,
the application of successful, malicious attacks, usually, inflect negative consequences. Even,

ordinary unskilled individuals may cause various types of harmful attacks by initiating
malicious scripts [1, 2]. The results of malicious attacks include financial and reputation loss,
drop in the value of a company’s stock and many other legal issues [3].

SASN, in its 2015 survey, [4] found that 79% of Security Risk Management-Aligned
with Development- are focused on applying security resources to public-facing Web

applications, where security risks are the greatest. This trend in research has been even more

mailto:why2fatma@yahoo.com

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-72-

intensive on methods and algorithms for automatically detecting information-flow violations

in Web application. Information-flow violations may lead to potential leakage of information
and/or integrity breach such as cross-site scripting (XSS), SQL injection (SQLi), and others.

Research solutions, typically, focus on two approaches, type systems and program

slicing. Both suffer from a high rate of false findings, which limits the usability of analysis
tools based on these techniques. Attempts to reduce the number of false findings have

resulted in analyses that are, either (i) unsound, suffering from the dual problem of false
negatives, or (ii) too expensive due to their high precision, thereby failing to scale to real-
world applications [5, 6, 7, 8]. However, the presented approach overcomes this by addressing

the potential paths onto a sensitive computation that are influenced by untrusted input or
tainted code.

One of the recent researches [9] focused on analyzing the existing practices in
developing web applications and synthesizing security vulnerabilities evidence, based on, the
empirical studies reported to address solutions for vulnerable web application.

The Web application security testing, adopted in this work, may be accomplished by
adopting variety of verification techniques [10, 11, 12, 13]. They are either concerned with

exercising the activities of the web applications in order to realize its vulnerabilities [14, 15],
or examining the Web application vulnerabilities, to eliminate common security exploits and
to secure the emerging classes in web applications [16, 17, 18] through vulnerabilities

detection or prevention [19, 20, 21, 22, 23]. Some are concerned with the automatic
generation of test cases for specific types of vulnerabilities [13, 14, 15, 16, 17, 18, 21, 22];
whereas others are applying different techniques to emulate the web pages themselves [23].

Tools and packages are available both, commercially and open sources, to detect some types
of vulnerabilities [24, 25, 26, 27, 28, 29].

The basic idea of the approach is to isolate the vulnerable (tainted) code in a given
application. The code became tainted whenever it is vulnerable and uses a tainted
value/variable/parameter (defined by either untrusted input/source or tainted code).

Therefore, our goal, here, is to trace the propagation of the tainted variables over the control
paths of the application. However, precisely identifying all the paths in a given application is

equivalent to the halting problem. Yet, a presented solution was to associate each tainted
variable with its life scope and trace them, only, through their life paths onto a
sensitive/vulnerable computation code.

The main objective of this paper is to expose the security vulnerabilities embedded in
the web application code or transferred through the client side applications. Security

verification should provide coverage for code related web security issues.

The activity of a given application are managed by the data flow and controlled by the
data influences over the application variables. Some of these data are communicated to the

application either by web application’s user or externally through a linked database.

Those communicated data are one of the main instruments used by the attackers to

intrude web applications. Therefore, this paper utilizes a data-flow analysis technique,
namely: static slicing, to isolate the portion of the application code that is vulnerable to
potential security breaches (tainted code).

Some type of attacks can be exposed by examining the client side application code,
whereas, most of the vulnerabilities are found to be embedded in the server side code of the

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-73-

application. This paper is concerned with the types of attacks encouraged by the code of

client side (Buffer Overflow, Bypass Restrictions on Input Choices and Hidden Field) and
that of the server side vulnerabilities (Cookie Poisoning, SQL Injection, Cross-Site Scripting
and CGI Parameters).

 SQL Injection and Cross Site Scripting (XSS) attacks are widespread forms of attacks
in which the attacker crafts the data communicated to the application to access or modify user

data and execute malicious code. In the most serious attacks (called second-order, or
persistent, XSS), an attacker can corrupt a database so as to cause subsequent attacks that
execute malicious code. This paper is organized as follows:

Section 2 reviews the related work, Section 3, illustrates the system theory, Section 4
introduces the framework for establishing the theory into a working scanning tool. Section 5

discusses the prototype for the system implementation for PHP and HTML web Languages.
Section 6 discusses the results and evaluation Section 7 is the conclusion and discussion.

2. Related Work

This paper is concerned with information flow influence in the application code,
demonstrated with static analysis of code slice dependencies of the security sensitive

computation (taint analysis). Chang and Newsome [30, 31] introduced a survey for dynamic
taint-analysis techniques. A detailed overview of works on program slicing is given in [32]
and references therein.

The presented system (WAVE), employed static slicing to extract the vulnerable (taint)

code from server side, and employed Microsoft .Net Framework Regular Expressions for
checking client side code. WAVE system expose most types of code security vulnerabilities

including Cookie Poisoning, SQL Injection, Cross-Site Scripting, CGI Parameters, Buffer
Overflow, Bypass Restrictions on Input Choices and Hidden Field. The prototype of the
system targeted PHP web application language, yet the presented system with a support of a

front end compiler is applicable for most web application languages. Agosta et al, [33],
presented a methodology and tool for vulnerability identification based on symbolic code

execution exploiting Static Taint Analysis. Their tool target PHP web applications for
identifying, only, cross-site scripting and SQL injection vulnerabilities. Omer Tripp et al, [34]
introduced a scanning tool, which refrains from building global program representations.

Their tool provides a demand driven analysis, which enables lazy computation of vulnerable
information flows. It supports applications written in Java, .NET and JavaScript. Volpano et

al. [4] showed a type-based algorithm that verifies implicit and explicit flows and also
guarantees noninterference. Given a program, the principle of noninterference stated that
low-security behavior of the program is not influenced by any high-security data, unless that

high-security data has been previously downgraded [35]. Shankar et al. [36] presented a taint
analysis for C using a constraint-based type-inference engine based on cqual. Similarly to the

flow graph built by WAVE, a constraint graph is constructed for a cqual program, and paths
from tainted nodes to untainted nodes are flagged. Myers’ Java Information Flow (JIF) [37]
utilized type-based static analysis to track information flow. Based on the Decentralized Label

Model [38], JIF considered all memory as a channel of information, which requires that every
variable, field, and parameter used in the program be statically labeled. Labels can either be

declared or inferred, Similar to defined-used notation in the theory applied in the WAVE
system. Ashcraft and Engler [39], also, applied taint analysis to detect software attacks due to
tainted variables. Their approach provides user-defined sanity checks to untaint potentially

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-74-

tainted variables. Pistoia et al, [40] presented a static analysis to detect tainted variables in

privilege-asserting code in access-control systems based on stack inspection. Snelting et al,
[41] made the observation that Program Dependence Graphs (PDGs) and noninterference are
related, it employed backward slicing to map each statement to its static backwards slice.

Based on this observation, Hammer et al, [42] presented an algorithm for verifying
noninterference. Though promising, this approach has not been shown to scale. Unlike

WAVE that employs forward analysis to expose potential vulnerabilities due to interference
caused by code dependencies and data flow influence. Livshits and Lam [43] analyzed Java
EE applications by tracking taint through heap allocated objects. Their solution required prior

computation of Whaley and Lam’s flow insensitive, based on Binary Decision Diagrams
(BDDs) [44], which limits the scalability of the analysis [45, 46]. Guarnieri et al, [47]

presented a taint analysis for JavaScript. Their work relies on Andersen’s whole program
analysis [48].

Wassermann and Su [49] extended Minamide’s string-analysis algorithm [22] to,
syntactically, isolate tainted substrings from untainted substrings in PHP applications. They

labeled non-terminals in a context-free grammar with annotations reflecting taintedness and
untaintedness. Their expensive yet elegant mechanism was applied to detect both SQLi and

XSS vulnerabilities. Subsequent work by Tateishi et al, [50] enhanced taint-analysis
precision through a string analysis that automatically detects and classifies downgraders in the
application scope. The front end of the WAVE system prototype, however, engineered a

predictive grammar from the context-free grammar of the PHP language, with terminals
defined as regular expressions. This formalism facilitates the recognition of the vulnerable

statement, therefore, the tainted statements (whenever influenced by a tainted code), without
further analysis of the code string.

McCamant and Ernst [51] took a quantitative approach to information flow: instead of
using taint analysis, they cast information-flow security to a network-flow-capacity problem, and
describe a dynamic technique for measuring the amount of secret data that leaks to public observers.

Parameshwaran et al [52] proposed a technique to mitigate the DOM-based XSS
injection vulnerability caused by the unsafe dynamic code generation of JavaScript
applications. They generated secure patches to replace the unsafe string interpolation with

safer client side code. Whereas, our approach, verifies the client side code (PHP) and HTML
interpolation code against pre-specified Regular Expressions.

3. System Theory

 Data-flow analysis technique, [53] was adopted to study the influence of the input data
over the variables included in the Web application’s statements. A portion/slice of the

application software that is, potentially, influenced by such input data, (taint code) is to be
isolated. This is accomplished by utilizing static slicing verification technique working as an

end-to-end scanner.

3.1 Illustrations

The following is a typical example of SQL vulnerability, with a tainted code:

1. $name = $_GET['name'];
2. $q = "select * from users where name = '" . $name . "';"; 3. $result = mysql_query($q);

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-75-

The parameter $name is defined by the user in statement 1, set as an argument that is

used in the SQL query created on statement 2, and issued on statement 3, in the variable
$result.

Statement 1 defines the parameter variable $name, therefore it is a DEFINITION of

$name; i.e., {1} = D($name). Statement 2 defines the argument variable $q, and uses the
parameter variable $name, so it is a definition of $q ({2}= D($q))and a USE of $name; i.e.,

{2} = U($name). Statement 3 defines the variable $result. The define-use chains (DU) for the
variables in this code are:

DU($name) = {1 2}, DU($q)= {2 3}, DU($result)= {3 -}

 The code here, was tainted by the variable $name, that is the attacker control window to
cause privacy breaches. The idea of the static analysis is to first identify those spoiling

variables that are defined by the user or external input. Then apply data flow analysis to
follow the propagation of those definitions throughout the application code. In the
illustrative example, the definition (statement 1) of $name propagated through the code to be

used in statement 3. Being a vulnerable statement, it is tainted by propagated variable. The
criteria of selecting the taint code, therefore, is to isolate the set of all sensitive U-Statements

for any untrusted data, whether directly or through their propagation effects.

3.2 The Theory

 The slicing criteria Cv constitutes the set of vulnerable statements in the application code,

which could be a window for breaching the code:

 Cv= {Vul, ml}, where:

Vul : the set of variables influenced by externally-defined parameters,

m: the serial number of last statement ‘E’ in the code.

The code is analyzed as a program flow graph PFG with statements as graph nodes {N1,

N2,...Nm} and the program paths as arcs A = {Aij}, i,j (1, 2,…,m} i j . The program graph

PFG for the application code is defined as PFG = {{N}, {A}, B, E}, where Aij is the arc between the
two nodes Ni and Nj, B is the start of the program, and E is the last statement.

Given the graph PFG, that has m nodes and a set of J program variables, Var = {v1, v2, …, vJ},
that are manipulated through those m nodes.

 Any node Ni {N} that defines a variable v Var is in the set of definitions of v denoted by

D(v), i.e., Ni D(v). The definition of v at Ni is therefore denoted by v
i
.

 Each definition Ni, for a given variable v Var, is life only in the scope of its definition, as v

could be redefined in some other node Nk , it follows that

D(v) = {Ni, Nk, …}, i k

 Definition Life scope of a variable LS(v): given that N0 is the definition of v, then its life scope is
the path between N0 and the node Nk , where it is redefined, or the last node m, otherwise.

 (N0 D(v) Nk D(v) LS(v) = A0k)

 (N0 D(v) i | 0 < i < m Ni D (v) LS(v) = A0m) (1)

 Any node Nk {N} that uses variable v is in set U(v), i.e., Nk U (v).

 A node Ni D(v), is the reaching definition of v
i
 at node Nk ,(RDk(v

i
)), iff

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-76-

Nk U(v
i
) and there exist a feasible path, iK, (Aik), between Ni and Nk through which v

i
 is not

redefined (i.e., v
i
 is life at node k-or- node k is in the scope of v

i
).

 [Ni = D(v
i
) Nk U(v) (r| i< r < k Nr D(v))] Ni = RDk(v

i
) (2)

 A node Nk is influenced by node Ni iff the definition of variable v
i
 was not altered before it was

used at Nk, namely: RDk(v
i
) at node Nk.

 Nk U(v) Ni = RDk(v
i
) Nk infl(Ni) (3)

 Each node Ni that is influenced by any of the variable v {Vul}, is assumed vulnerable and is added
to the slice Cv(Vul, m).

 Ni = RDk(v
i
) v

i
 {Vul} Nk Cv{Vul,ml} (4)

 All nodes Nk {N} that are influenced by a vulnerable nodes Ni Cv{Vul,m}, are assumed

candidates of potential vulnerability, therefore added to the slice.

 Nk infl(Ni) Ni Cv{Vul, ml} Nk Cv{V, ml} (5)

 Each variable v
i
 defined at a vulnerable node Ni (i.e., Ni Cv{Vul,ml} [Nk Cv{Vul,ml} Ni

infl(Nk)) is assumed vulnerable, and is added to the set {Vul}. This is realized through an iterative
application of rules (5) and (6).

 Ni Cv{Vul,ml} Ni D(v) v
i
 {Vul} (6)

 A node Ni is a decision node (Ni DN) if it has more than one arc,

{Aij, Aik, …, Ain) A, onto several different nodes, (Nj, Nk, …, Nn).

 All nodes that are in the scope of a given branching node are influenced by it, at least as it is in its
control scope.

 Nk scope (Ni DN) Nk infl(Ni) (7)

While this rule is a verification rule, it may actually generate quite a good number of

false positive, because the taint branching statement may only be controlling the execution
path, without affecting the definitions of the statement in its scope. This case is eliminated by
the application of rules (4) and (5).

 Defined-Used Chain of a given variable v, denoted by DU(v) is the set of couple (Nd1 Nu1, …, Ndq

Nuq), such that Ndi D(v) and Nui U(RDui(v
di

)), i = 1,2,…,q, where q is the product of the
number of times v is defined and the number of times v is used [53].

The DU-chain of the parameters of the illustrative example (Section 3.1) are:

 DU($name) = {1 2}, DU($q)= {2 3}, DU($result)= {3 -}.

It is worth mentioning that a defined variable must be used before its redefinition to be called
"life", otherwise it is a code anomaly. This is not included in the rule as it does not flag any security
violation.

4. System Framework

The general framework of the web application vulnerability extractor system is shown

in Figure 1. Its components are discussed in the following subsections.

4.1 Front End Compiler and Static Analyzer

The front end compiler extracts a parse tree from the given application code. It lexically
and syntactically analyzes the code to generate the corresponding parse tree.

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-77-

The static analyzer considers the parse tree to build a flow graph of the application code

that is annotated with the node number (statement number). It computes the variable's
dependencies and their influences. The data dependencies and influences of the nodes
variables are realized through the extraction of variables’ DEFINITIONS, USES and

DECISION CONSTRUCTS and their life scope. It generates a set of tables that specify, for
each variable, its set of DEFINITION nodes, D(v) (where the variable was defined), USE

nodes, U(v) (where the variable was used) and DECISION nodes, DN(v) (where a variable
was used in the conditional predicate of decision node, if any), and their associated life scope.

4.2 Defined-Use Chain Extractor

Defined-Used Chain of each variable v, DU(v) is constructed from the generated data
dependencies and influences in the previous stage. The defined-use chain Extractor utilizes

the sets Definition, Use and Decision nodes in order to generate:

 The set of Defined-Used, DU{v} nodes for each variable v in the application code.

 The set of Decision Nodes DN{v} nodes for each variable v in the application code.

 The set of nodes in the scope of the Decision Nodes, SDN{v} for each branching

(decision) node in the application code.

4.3 Static Slicing

Static slicing is a verification technique that analyzes the application code, statically, to

isolate specific statements. For the purpose of this paper, static slicing process is serving to
isolate the code statements which attain vulnerabilities directly or indirectly. It extracts a

portion of the program (taint code) as a set of nodes that, directly or indirectly, are affected by
any external data influence caused or delivered by the user of the application. The slicer
manipulates the generated set of define-use nodes DU{v}, decision nodes DN{v} and those in

the scope of the DECISION nodes SDN{v j}, (controlled, therefore influenced by DN{v}), to
extract the set of nodes that constitute the vulnerable slice or the potential taint code.

4.4 Slice Refinery

The isolated static slice is optimized through the refinery slicer to obtain the refined
static slice (RSTS). RSTS is the precise set of taint statements that supports a potential

program breach. Static refinery excludes, from the static slice, those nodes that are influenced
by the external data, yet, are not security sensitive (sink) nodes, therefore, are not assumed to

be vulnerability threat (i.e. it is false positive results). Depending on the application language,
sink nodes are those that permit access to or modifications of the web page internal data (e.g.
a database), control the HTML output of the web application, or any sensitive functions.

Also, it excludes the nodes in the scope of an influenced Decision node (SDN) that is not an
intrusion’s vulnerability.

4.5 Vulnerability Remedies

The vulnerabilities embedded in the taint code realized in the RSTS set are classified
according to its type –as a server side vulnerability- to include: Buffer Overflow, Cookie

Poisoning, SQL Injection and Cross Site Scripting. Some of the web application
vulnerabilities, however, are embedded in the client-side portion of the application. Those

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-78-

types include: Bypass Restrictions on Input Choices, CGI Parameters and Hidden Fields.

These types of client side code vulnerabilities are checked in the HTML code using the
corresponding Microsoft .Net Framework Regular Expressions [54] as shown in Table 1. The
next stage thereafter is to generate a report specifying the taint statements and the proper

remedy for each, to guarantee a better secured code.

5. System Architecture

This paper focuses on the vulnerabilities embedded in the code of Web application taint
code). One of the most common web programming languages (PHP) was adopted to build a

prototype of the presented framework. PHP is a server-side scripting language. Within an
HTML page, one can embed PHP code that will be executed each time the page is

visited/loaded. The PHP code is interpreted at the Web server to generate HTML or other
client side web language.

The architecture of the proposed Web Application Vulnerability Extractor (WAVE)

system is shown in Figure 2. Its components are discussed in the following subsections.

5.1 Static Analyzer

 The front end compiler is merged with the static analyzer to generate the lists of
DEFINITION, USE and DECISION nodes. Program code is lexically and syntactically
analyzed and parsed through the static analyzer. It is composed of a lexical analyzer and a

special syntax analyzer that generates the parse tree from code statements.

Application

Security sensitive

constructs/rules

Defined-Use

Chain

List of

Vulnerable

Code

Front End

Compiler

Defined–Use Chain

Extractor
Static

Slicer

Definition Nodes,

Use Nodes and

Decision Nodes
Tables

Vulnerability

Detector

Code Slice

Static

Analyzer

Syntax Tree

App Code

Server side

App Code
Client side

Figure 1: System Framework

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-79-

5.2 Defined-Use Chain Extractor

The defined-use chain Extractor (DU-Extractor) manipulates the DEFINITION, USE

and DECISION nodes tables in order to generate the list of DU{v} nodes for every variable v

 {Var}. This DU list facilitates the computation of the variable's reaching definitions RD(v)

rules (1, 2) in subsection 3.2. DU-Extractor reconstructs the definition and use tables into one
Linked list indexed by the variable's name. Each entry of the linked list consists of the

variable name and its list of DU pair of nodes associated with its life scope, using rule (1).

5.3 Static Slicing and Refinery

The slicer manipulates the generated set of nodes DU{v}, decision nodes DN{v} and
those in the scope of the decision nodes SDN{v} applying rule (7), (controlled, therefore

influenced by DN{v}), to extract the set of nodes that constitute the vulnerable slice.

All user-input constructs are assumed to be initial set of vulnerable code statement.

Therefore, the set of vulnerable variables, {Vul} is the set of variables whose values are
supplied externally by the user of the application, therefore could be tainted. An application
of rules (4, 5) extracts the vulnerable nodes that use the reaching definition of any of

vulnerable variables in the set {Vul}.

Defined-Use
Chain

List of

Tainted Code

Static

Analyzer

Defined–Use

Chain Extractor

Static/

Refinery
Slicer

Definition Nodes,

Used Nodes and
Decision Nodes

Tables

Client side

checker

Vulnerability

Detector

Client Side

Code

Web Language

Sensitive
Constructs

Server Side

Code
Slice of the Slice

Figure 2: System Architecture

Figure 3: Syntax and data influence analyzer

Start

Tables of definition,
use and decision

nodes

Parse Tree

Predictive

Grammars

Parsing
Table

More

Tokens?

End

N

Y
Parser

Data Influence

Extractor
Get Token

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-80-

 Those nodes are the initial slice Cv(Vul, ml)of potential vulnerable code. Then a set of

vulnerable variables is extracted from this slice using rule (6). Iteratively, rules (4, 5) then (6)
are repeated till saturation. At which point Cv(Vul, ml) constitute the slice of potential taint code.

This slice of vulnerable code is optimized through the refinery slicer to obtain the
refined static slice (RSTS). RSTS is the precise set of tainted statements that supports

potential program breach. Static refinery module excludes, from the static slice, those nodes
that are influenced, yet, does not indicate security threat. For example, the nodes in the scope
of an influenced selection node (SDN) may be interpreted or not depending on the logic and

control flow that could affects the behavior of the program, yet it might not be an intrusion’s
vulnerability.

Another example is the case of an influenced node that is not security sensitive;
therefore, it does not constitute a threat (not a sink node). RSTS is the set of statements
(nodes) that constitutes all vulnerable/tainted code that should be rectified through remedy

and recommendations.

5.4 Clients-Side Vulnerability Check

The vulnerability types detected by the system so far are those in the server-side
application code, including: Buffer Overflow, Cookie Poisoning, SQL Injection and Cross
Site Scripting. Some of the web application vulnerabilities, however, are embedded in the

client-side portion of the application. Those types include: Bypass Restrictions on Input
Choices, CGI Parameters and Hidden Fields, which could be detected by checking client-

side code using the corresponding Microsoft .Net Framework Regular Expressions [54] as
shown in Table 1.

Table 1: Regular Expressions for Detecting Client-Side code Vulnerabilities

Attack Type Regular Expressions

By-Pass Restrictions

on Input Choices

(?i)<input()+.*type()*=()*\"radio\"

(?i)<input()+.*type()*=()*\'radio\'

(?i)<input()+.*type()*=()*\"checkbox\"

(?i)<input()+.*type()*=()*\'checkbox\'

(?i)<select

CGI Parameters (?i)<form()+.*method()*=()*\"get\"

(?i)<form()+.*method()*=()*\'get\'

Hidden Fields

(?i)<input()+.*type()*=()*\"hidden\"

(?i)<input()+.*type()*=()*\'hidden\'

5.5 Vulnerability Remedies

The vulnerabilities embedded in the refined static slice (RSTS) are classified according
to its type in order to provide the appropriate recommendations and/or remedies. At this stage,
the system generates a report specifying the vulnerable statements and the proper remedy for

each, to guarantee better secured code.

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-81-

6. Results and Evaluation

For the purpose of evaluating the proposed WAVE system, a test suite was prepared. It
was made up of fifty PHP codes in three categories: Codes collected from research journal
papers (10 PHP codes), code examples from websites (28 PHP codes) and number of

artificially generated synthetic programs (12 PHP codes).

The test suite were chosen to stress any given analysis tool, presenting it with a number
of semantically complex (yet not uncommon) situations and challenging it to assess its

capability to recognize and extract their intrinsic vulnerabilities. The test suite was utilized to
exercise the WAVE system, as well as the free tools Yasca [26] and RIPS [27] for the purpose
of comparison and evaluation of the presented WAVE system.

6.1 Results of the WAVE System

The WAVE system was exercised by the prepared test suite. The result of executing

the presented system prototype under the test suite is shown in Figure 4. It extracted a total
of 87 vulnerabilities from 50 PHP codes, which implies the existence of multiple types of
vulnerability in a number of test codes. Figure 4, plots a detailed bar chart indicating the

category of the test cases and the types of the extracted attack’s vulnerability versus the count
of each.

6.2 Comparison and Evaluation

 The RIPS and Yasca tools were chosen for evaluating the WAVE system because they
are free and easy to be configured. Both tools supported two of the main types of

vulnerabilities, the SQL injection and cross site scripting. A subset of the test suite containing
26 codes was applied to compare between the WAVE system capabilities and those of RIPS

and Yasca tools. Figure 5, illustrates two dimensional plot for the two types of attacks
vulnerabilities, SQL Injection and Cross site Scripting with their test case categories
(papers, web sites and synthetics), versus the count of the detected vulnerabilities for the

tools Yasca, RIPS and the system under evaluation (WAVE).

6.3 Discussion

Some of the interested test cases are discussed to investigate the evaluation results. The
PHP code depicted in test case 1, [55] was successful test case as recognized by Yasca, RIPS
and WAVE system. It is an example of cross-site scripting vulnerability that was detected by

all three.

Test case 1: [55]
--
1. <?php echo "You searched for: " .$_GET["query"]; ?>
--
Test case 2, [56], however was a success for RIPS and WAVE but failed for Yasca. It is
another example that endures cross-site scripting vulnerability. It seems that Yasca tool does
not consider the indirect influence of the external data.

Test case 2: [56]

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-82-

1. $month=$_GET['month']; $year=$_GET['year']; $day=$_GET['day'];
2. echo "<a href=\"day.php?year=$year&"
3. echo "month=$month&day=$day\">";
--

6 6

2

8

7 7 7

0

1

2

3

4

5

6

7

8

9

BO CP SQLi XSS BIR CGI HFA

N
u

m
b

e
r

o
f

V
u

ln
e

ra
b

il
it

ie
s

Vulnerability Type

JC: Journal paper code WC: Web site code AC:Artificial code
BO:buffer overflow, CP: cookie poisoning, SQLI: SQL injection, XSS: Cross Site Script,

BIR: bypass input restriction, CGI: CGI parameter attack, HFA: Hidden field

JC

WC

AC

0

2

0

1

2

1

0

5

1

6

2

1

3

6

2

8

4

3

0

1

2

3

4

5

6

7

8

9

SQLI_PC XSS_PC SQLI_WC XSS_WC SQLI_AC XSS_AC

N
u

m
b

e
r

o
f E

xt
ra

ct
e

d
 V

u
ln

e
ra

b
il

it
ie

s

Vulnerabilities type and category
SQLI_PC: SQLI paper code, XSS_PC: XSS paper code, SQL_WC: SQLI Web site code, XSS_WC: XSS

web site code, SQLI_AC: SQLI artificial code, XSS_AC: XSS artificial code

Yasca

Rips

Wave

Figure 4: Vulnerabilities extracted by the WAVE System

Figure 5: Tainted code detected by RIPS tool, Yasca tool and WAVE System

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-83-

Yet, test case 3, [57] was a success for, only, WAVE system. It is another example with a Cross-site
scripting attack vulnerability. In statement 8, the user input “user_comment” is inserted in a SQL
query (to be inserted into a database). It could be the case that both Yasca and RIPS tools consider the
cross site scripting vulnerability, only, for a visible input in a direct output statement, both tools
however, did not consider this vulnerability.

Test case 3: [57]
--- ---
1. <form method ="get"> <input name="user_comment" type="text">
2. <input type="submit" name="Submit1”> </form> 3. <?php
4. $con = mysql_connect("localhost","root",""); 5. if (!$con) { die('Could not connect: ' . mysql_error()); }
6 mysql_select_db("comments", $con); 7. if (isset($_REQUEST['Submit1']))
8 { mysql_query("INSERT INTO comments (comment) VALUES (".$_REQUEST['user_comment'].")",$con);}
9 $result = mysql_query("SELECT * FROM comments",$con); 10. echo $row['comment']; echo "
";

mysql_close($con); ?>
--- --
Test case 4 depicts an example for SQL injection vulnerability for potential attacks, induced

by the influenced variables $m and $y. WAVE system flagged statement 4 as a vulnerability
because of the indirect influence of the input variables in the SQL command. Yasca tool

could not detect this vulnerability, because the variables involved in the catenation
(statement 4), are not direct inputs ($m and $y are defined by ‘$user’ and $pass, respectively).
Also, both Yasca and RIPS tools failed to detect this as vulnerability because the SQL

statement is passed to the database server, from a different page.

Test case 4: Artificial code

--- --

1. <?php $user=$_POST['username']; 2. $pass=$_POST['password']; 3. $m=$user; $y=$pass;
3. $sql="SELECT count(*) FROM users WHERE username= $m' AND password = '$y'"; ?>

The major vulnerability in the test cases 5-to- 8, was the indirect influence imposed by the external
variable, supplied by the user of the application. It induces vulnerability for potential SQL injection
attacks. This influence was detected by neither Yasca nor RIPS.

Test case 5: [57]

------------------------- --

1. <?php 2. $sql="select * from usermaster where username='{$_POST['username']}'"; ?>
------------------------- ---
Test case 6: [58]

------------------------ ---

1. <?php 2. $show=$_POST['username'];
3. $query = "SELECT usernames FROM users WHERE usernames LIKE '".$show."%' "; ?>

Test case 7: Artificial code

------------------------- ---

1. <?php 2. $id = $_POST['id'] ;

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-84-

3. $query = "SELECT id, title, content FROM news WHERE id = $id" ; ?>

Test case 8: [59]

--------------------------- ---

1. <?php 2. $HTTP_REFERER =$_POST['value'];
3. $sql="INSERT INTO tracking_temp VALUES('$HTTP_REFERER');"; mysql_query($sql,$con); ?>

As shown in Figure 5, Yasca, tool performed poorly due to its incapacity of handling the
vulnerabilities caused by indirect influence of externally provided data (inputs). RIPS tool,

however, were capable of detecting the direct and indirect inputs for Cross Site Scripting
attack vulnerability. Both tools were capable of detecting Cross Site Script whenever user

inputs reaches output statement, but not when it was written into the database. According to
the evaluation test, it might be the case that neither Yasca, nor RIPS tools were considering
the indirect influences of the external data that could potentially induced SQL injection

attacks.

7. Conclusion

Whether a software developer is maintaining a legacy web application or building a new
one, security is a crucial aspect. The aim of this research paper was to expose the code
dependent web vulnerabilities that cause security breaches. Most of the important web

application code vulnerabilities were examined, specially, those concerned with
communicated external data provided by a user of the application. An adaptation of one of

the famous testing technique is established to isolate the vulnerabilities of web application
code. The technique of the static slicing was applied to isolate program constructs that attain
vulnerabilities directly or indirectly. A prototype for the presented framework provided a

code oriented vulnerability Extractor with recommendations for mending the
vulnerable/tainted code against the corresponding security breaches.

Web application vulnerabilities, including buffer overflow, cookie poisoning, SQL
injection and cross-site scripting, were detected by analyzing the server-side code using static
slicing analysis technique. The Bypass restrictions on input choices, CGI parameters and

hidden field vulnerabilities, however, cannot be detected by analyzing the server-side code
alone. Rather, they could be detected by checking the client-side code with the appropriate

regular expressions.

Typically, there is a gap between developers, who build and maintain web application
and the security personnel, who help them in making the application more secure. The

proactive nature of the proposed system, however, will help to avoid this gap.

Applying the presented system, during Web application development cycle and/or

maintenance of a legacy application, will assist the developers and provide them with agile
understanding of the security breaches and its causes. The provided recommendations
suggest better style and proper- security preserving- utilization of the programming

constructs, through an empirical study of the constructed software.

The presented system is also applicable for integration testing, delivery testing and

deployment testing (against the investigated types of attacks).

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-85-

 Generally speaking, web application code dependent vulnerabilities are neither

intrinsic, nor amenable to the cleverness of the intruder. It could, always, be avoided by
skilled and experienced application’s developers aided by security policies and supporting
tools.

References

[1]. M. Andrews, J.A. Whittaker, “How to Break Web Software,” Addison-Wesley

Professional, USA, 2006.

[2]. 2
.
D. Melnichuk, “The Hacker's Underground Handbook,” Create Space Independent,
USA, 2010.

[3]. 3
.
R. L. Krutz and R. D. Vines, “The Comprehensive Guide to Certified Ethical
Hacking,” Wiley, Indiana, 2007.

[4]. 4
.
J. Bird, E. Johnson and F. Kim, “2015 State of Application Security: Closing the
Gap,” InfoSec Reading Room SANS Institute, May 2015.

[5]. 5
.
D. Volpano, C. Irvine and G. Smith, “A Sound Type System for Secure Flow

Analysis,” JCS, vol. 4, pp. 167-187, 1996.

[6]. 6
.
A. C. Myers. “JFlow: Practical Mostly-static Information Flow Control.” In POPL,

1999.
[7]. 7

.
U. Shankar, K. Talwar, J. S. Foster and D. Wagner, “Detecting Format String
Vulnerabilities with Type Qualifiers.” In USENIX Security Symposium, 2001.

[8]. 8
.
 P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz and V. N. Venkatakrishnan
“NoTamper: Automatic Blackbox Detection of Parameter Tampering Opportunities

in Web Applications.” In Proc. of the ACM Conf. on Computer and
Communications Security, 2010.

[9]. 9
.
S. Rafique, M. Humayun, B. Hamid, A. Abbas, M. Akhtar and K. Iqbal, “Web

application security vulnerabilities detection approaches: A systematic mapping
study.” In Proc. of the 16th Int. Conf. on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing (SNPD), IEEE/ACIS,
Takamatsu, Japan, 2015.

[10]. 1
0
.

A. Garg and S. Singh,“A Review on Web Application Security Vulnerabilities,”

Int. Journal of Advanced Research in Computer Science, and Software Engineering,
vol. 3, pp. 222-226, 2013.

[11]. 1
1
.

S. Mairdula and D. Manivannan, “Security Vulnerabilities in Web Application – An
Attack Perspective,” Int. Journal of Engineering and Technology (IJET), vol. 5, pp.
1806-1811, 2013.

[12]. 1
2
.

 A. Kiezun, P.J. Guo, K. Jayaraman, M.D. Ernst, “Automatic Creation of SQL
Injection and Cross-Site Scripting Attacks”, Computer Science and Artificial

Intelligence Laboratory, Massachusetts institute of technology, Cambridge, MIT-
CSAIL-TR-2008-054, USA, 2008.

[13]. 1
3
.

M. Martin, and M.S. Lam, “Automatic Generation of XSS and SQL Injection

Attacks.” In Proc. Of The Advanced Computing System Association Conf.,
Canada, 2007, pp. 31-43.

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-86-

[14]. 1
4
.

F. Dysart and M. Sherriff, “Automated Fix Generator for SQL Injection Attacks.” In

Proc. 19th Int. Symposium on Software Reliability Engineering (ISSRE), Seattle,
WA, 2008, pp. 311-312.

[15]. 1
5
.

A. Guha, S. Krishnamurthi and T. Jim, “Using Static Analysis for Ajax Intrusion

Detection,” In Proc. Int. World Wide Web Conf. : Web Security, Madrid, Spain.
April, 2009, pp. 561-570.

[16]. 1
6
.

Y. Shin, L. Williams and T. Xie, “Test Case Generation for SQL Injection
Detection,” North Carolina State University Department of Computer Science, TR-
2006-21, USA, 2006.

[17]. 1
7
.

N. Jovanovic, E. Kirda and C. Kruegel, “Preventing Cross Site Request Forgery
Attacks.” In Proc. Second Int. Conf. on Security and Privacy in Communication

Networks, USA, 2006, pp. 1-10.

[18]. 1
8
.

K. Wei, M. Muthuprasanna and S. Kothari, “Preventing SQL Injection Attacks in
Stored Procedures,” In Proc Australian Software Engineering Conf. (ASWEC’06),

Australia, 2006.

[19]. 1
9
.

J. Bau, E. Bursztein, D. Gupta and D. J. Mitchell,“Automated Black-Box Web

Application Vulnerability Testing,” Security and Privacy (SP), IEEE Symposium,
USA, 2010, pp. 332 - 345.

[20]. 2
0
.

H. Shahriar and M. Zulkernine “Automatic Testing of Program Security

Vulnerabilities.” In Proc. 33rd Annual IEEE Int. Computer Software and
Applications Conf., USA, 2009, pp. 550-555.

[21]. 1

.

T. Sultan, S. Kholeif and M.A. Sultan, “Securing Web Application Against SQL Injection
Attack,” Egyptian Computer Science Journal, Egypt, 35(3), pp. 11-22, 2011.

[22]. 2
2
.

K. Umar, A.B. Sultan, H. Zulzalil, N. Admodisastro and M.T. Abdullah, “On the

Automation of Vulnerabilities Fixing for Web Application.” In Proc. of The 9th Int.
Conf. on Software Engineering Advances (ICSEA), 2014, pp. 221-226.

[23]. 2
3
.

Y. Minamide, “Static Approximation of Dynamically Generated Web Pages.” In

Proc. of Int. World Wide Web Conf. Committee (IW3C2), Japan, 2005, pp. 432 – 441.

[24]. 2
.
NOTAMPER Supplementary, http://sisl.rites.uic.edu/notamper, last retrieved on
July, 2015.

[25]. 2
.
The Official Website of Backtrack http://www.backtrack-linux.org/, last retrieved
on July, 2015.

[26]. 2 Yasca Tool. Available at http://www.scovetta.com/yasca.html, last retrieved on July, 2015.

[27]. 2
7
J. Dahse, “RIPS - A static source code analyzer for vulnerabilities in PHP Scripts,”

Horst Görtz Institute, Ruhr University Bochum, German, 2010.

[28]. 2
.
WAVSEP Web Application Scanner Benchmark 2014, available at:

http://sectooladdict.blogspot.com/2014/02/wavsep-web-application-scanner.html

[29]. 2
.
 Vulnerability Scanning Tools, available at:
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools

[30]. 3
0
W. Chang, B. Streiff and C. Lin, “Efficient and Extensible Security Enforcement
Using Dynamic Data Flow Analysis.” In Proc. of the 15th ACM Conf. on Computer

http://sisl.rites.uic.edu/notamper,
http://www.backtrack-linux.org/,
http://www.scovetta.com/yasca.html
http://sectooladdict.blogspot.com/2014/02/wavsep-web-application-scanner.html
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-87-

. and Communications Security (CCS'08), NY, USA, 2008, pp. 39-50.

[31]. 3
1
.

J. Newsome and D. Song. “Dynamic Taint Analysis for Automatic Detection,
Analysis, and Signature Generation of Exploits on Commodity Software.” In Proc.
of the 12th Annual Network and Distributed System Security Symposium

(NDSS'05), Feb. 2005.

[32]. 3
2
B. Xu, J. Qian, X. Zhang, Z. Wu and L. Chen, “A brief survey of program slicing,”

ACM SIGSOFT Software Engineering Notes, NY, USA, vol. 30, pp. 1-36, 2005.

[33]. 3
3
.

G. Agosta, A. Barenghi, A. Parata and G. Pelosi, “Automated Security Analysis of
Dynamic Web Applications through Symbolic Code Execution.” In Proc. of the 9th

Int. Conf. in Information Technology: New Generations (ITNG'12), April 2012,
pp.189-194.

[34]. 3
4
.

O. Tripp, M. Pistoia, P. Cousot, R. Cousot and S. Guarnieri, “Andromeda: Accurate and
scalable security analysis of web applications,” Fundamental Approaches to Software
Engineering, Ed. Vittorio Cortellessa and Dániel Varró, ch.15, pp. 210–225, 2013.

[35]. 3
.
J. A. Goguen and J. Meseguer. “Security Policies and Security Models.” In Proc. of

the IEEE Symposium on Security and Privacy, 1982, pp. 11-20.

[36]. 3
.
U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. “Detecting Format String
Vulnerabilities with Type Qualifiers.” In Proc. of USENIX Security Symposium, 2001.

[37]. 3
7
.

A. C. Myers and B. Liskov, “A Decentralized Model for Information Flow

Control.” In Proc. of the IEEE Symposium on Security and Privacy(S&P),
California, USA, 1998, pp. 1-12.

[38]. 3
8
.

S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng and X. Zheng, “Secure

web applications via automatic partitioning.” In Proc. of 21st ACM SIGOPS
Symposium on Operating systems principles (SOSP'07), NY, USA, 2007, pp. 31-

44. Doi:10.1145/1294261.1294265

[39]. 3
9
.

K. Ashcraft and D. Engler, “Using Programmer-Written Compiler Extensions to
Catch Security Holes.” In Proc. of the IEEE Symposium on Security and Privacy

(S&P), 2002, IEEE Computer Society Press.

[40]. 4
0
.

M. Pistoia, R. J. Flynn, L. Koved and V.C. Sreedhar, “Interprocedural Analysis for

Privileged Code Placement and Tainted Variable Detection,” ECOOP, LNCS 3586,
Springer Verlage, Berlin, pp. 362–386, 2005.

[41]. 4
1
.

G. Snelting, T. Robschink and J. Krinke, “Efficient Path Conditions in Dependence

Graphs for Software Safety Analysis,” ACM Trans. on Software Engineering and
Methodologies (TOSEM), vol. 15(4), pp. 410-457, 2006.

[42]. C. Hammer, J. Krinke and G. Snelting. “Information Flow Control for Java Based
on Path Conditions in Dependence Graphs.” In the IEEE Symposium on Security
and Privacy(S&P), 2006.

[43]. 4
3
.

V. B. Livshits and M. S. Lam. “Finding Security Vulnerabilities in Java
Applications with Static Analysis.” In Proc. of the 14th USENIX Security

Symposium, MD. US, 2005.

[44]. 4
4
J. Whaley and M. S. Lam, “Cloning Based Context-Sensitive Pointer Alias Analysis
Using Binary Decision Diagrams.” In proc. Programming Language Design and

http://dx.doi.org/10.1145/1294261.1294265

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-88-

. Implementation (PLDI'04), DC, USA, 2004.

[45]. 4
5
.

M. Sridharan and R. Bodík, “Refinement-based context-sensitive points-to analysis
for Java.” In Proc. of the 27th ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI'06), NY, USA, 2006, pp. 387-400.

[46]. 4
.
O. Lhot´ak and L. J. Hendren, “Context-Sensitive Points-to Analysis: Is It Worth
It?” In Int. Conf. on Compiler Construction, 2006.

[47]. 4
7
.

S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby and S. Teilhet, “Saving the World Wide
Web from Vulnerable JavaScript.” In Proc. Int. Symposium Software Testing and
Analysis, ON, Canada, July 2011. Download from:

http://sammyg.org/Work/Actarus/actarus.pdf

[48]. 4
8
.

L. O. Andersen. “Program Analysis and Specialization for the C Programming
Language.” PhD. Thesis, University of Copenhagen, Copenhagen, Denmark, May 1994.

[49]. 4
9
.

G. Wassermann and Z. Su. “Sound and Precise Analysis of Web Applications for
Injection Vulnerabilities.” In Proc. Of the 28th ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI'07), NY, USA, 2007, pp 32-41.

[50]. 5
0
.

T. Tateishi, M. Pistoia, and O. Tripp. “Path- and Index-sensitive String Analysis

Based on Monadic Second-order Logic,” ACM Transactions on Software
Engineering and Methodology, NY, USA, 22(4), no. 33, 2013.

[51]. 5
1
.

S. McCamant and M. D. Ernst, “Quantitative Information Flow as Network Flow

Capacity ” In Proc. of the 29th ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI'08), NY, USA, 2008, pp. 193-205.

[52]. 5
2
I. Parameshwaran, E. Budianto S. Shinde, H. Dang A. Sadhu and P. Saxena, “Auto-

patching DOM-Based XSS at Scale.” In Proc. of the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE'15), Bergamo, Italy, 2015.

[53]. 5 B. Beizer, “Software Testing Techniques.” Second Edition, New York. USA, 2003.

[54]. 5
4
.

MSDN.NET Framework Regular Expressions. Available at:

https://msdn.microsoft.com/en-us/library/az24scfc%28v=vs.110%29.aspx

[55]. 5
5
Cross-Site Scripting Attacks. Available at:

http://www.sitepoint.com/php-security-cross-site-scripting-attacks-xss/

[56]. 5
6
.

Y. W. Huang, F. YU, C. Hang, C. H. Tsai, D. T. Lee, S.Y. Kuo, “Securing Web
Application Code by Static Analysis and Runtime Protection.” In Proc. of the 13th

Int. Conf. on World Wide Web, USA, 2005, pp. 40–52.

[57]. 5
7
.

How to add data into sql db using AJAX and PHP. Available at:

http://stackoverflow.com /questions/13456101/how-to-add-data-into-sql-db-using-
ajax-and-php

[58]. 5
8
.

S. P. Chandran and M. Angepat, “Comparison between ASP.NET and PHP

Implementation of a Real Estate Web Application.” Thesis, School of Innovation,
Design and Engineering, Sweden, 2011.

[59]. 5
9
The Open-source PHP Compiler, http://www.phpcompiler.org/.

http://sammyg.org/Work/Actarus/actarus.pdf
https://msdn.microsoft.com/en-us/library/az24scfc%28v=vs.110%29.aspx
http://www.sitepoint.com/php-security-cross-site-scripting-attacks-xss/
http://www.phpcompiler.org/

