
Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-89-

Reverse Engineering Model from Object-Oriented Programs Using
Concept Lattice

Hamed J. Fawareh
Faculty of Information Technology, Zarqa University, Jordan

fawareh@zu.edu.jo

Abstract

A reverse engineering model for object oriented programs using concept lattice is
described in this paper. This model is based on applying the concept lattice for object-oriented

features. These features are represented using concept lattice in the form of class and
embedded representation. Te idea proposed here forms an analysis technique for object-

oriented features based on representing the relations between various programs elements in a
lattice structure. Furthermore, this paper demonstrates that a concept lattice and an embedded
representation can facilitate the reverse-engineering of a class for which the source file is not

available. It also, discusses how the lattice and the embedded method representation can be
used in order to efficiently read source files if available.

Keywords: Concept lattice, Reverse engineering, Object – Oriented program analysis.

1. Introduction

Knowing how different entities are related leads to understanding a software
application. In object-oriented application framework, entities are classes and methods. When

one defines a class in an application, he requires knowledge about how behavior and structure
have to be used using inheritance techniques. It is not trivial to achieve optimal use, especially

when the number of classes is large or the inheritance hierarchy is deep [1]. In these
situations, concept lattice can be used as a technique to help us cope with these problems, by
visualizing the inheritance and interface relationships among the classes in the class hierarchy.

Then the way, inheritance is used in the framework can be understood and documented, and
this information is used to provide guidelines for how the framework can be modified or

customized without running in to behavioral problems or without breaching the design
conventions used when building the framework. This concept allows us to identify
meaningful grouping of elements(objects) with common properties (attributes).

In this paper we provide a reverse engineering model, which represent object oriented
features using concept lattice representation. This model provides information with the

objective to support object-oriented program tasks, in addition to object oriented component
relationships. All these views can help in understanding the source code of object oriented
technique.

There are two aspects contributing to the complex nature of software system, which are
behavior and structure. The response of a system to some input is referred to as the behavior

of the system. To understand the behavior of software system means to understand the
behavior of the system components and the relationships between these components. In object

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-90-

oriented programs the features between various components of the software are the most
important to understand the behavior of the software system.

Concept lattice analysis provides a way to identify groupings of objects that have

common attributes. The mathematical foundation proved that for every binary relation
between certain objects and attributes, a lattice can be constructed, that allows remarkable

insight into the structure of the original relation [1].

The lattice concept started to be widely used in software technology [2-5], especially in
applied concept analysis to software design, object oriented techniques and databases. The

most related works to the presented approach in this work are applications of concept analysis
to object oriented techniques[10-16]. Godin and Mili [7] used concept analysis to maintain,

understand and detect inconsistencies in the Smalltalk Collection hierarchy. They
automatically attempt to build a better interface hierarchy for class hierarchy based on
convenience interface. In [9] lattice concepts are exploited to organize the set of classes into

structured Galois lattice. Snelting [9] developed a tool based on computing concept lattice and
displays features between configuration threads and visualizes the overall configuration

structures. Snelting and Tip [1, 10] analyzed a class hierarchy in C++ and Java by making the
relationship between methods and variables explicit. They were able to detect design
anomalies such as class members that are redundant or that can be moved into a derived class.

This approach proved useful to serve as a basis for automated or interactive restructuring tools
for class hierarchies. Concept analysis is exploited in [1] for reengineering class hierarchies.

A context describing the usage of class hierarchy is the starting point for the construction of a
concept lattice from which redesign hints can be derived.

Siff and Reps used concept analysis to modularize legacy C programs into C++ classes

[4]. Concept analysis is used to identify modules by considering both positive and negative
information about the types of the function argument and the return values then construct a

lattice concept from a program [4]. In [6] concept analysis is applied to extracting the code
configurations while in [12] concept analysis is used to partitions the method of the class
according to their use of fields and then presents them in concepts lattice form.

All the above approaches extracted the information and relationships for the
implemented classes. More information and relationships (e.g., affect relationship) was not

considered. This paper shows more relationships between classes which are analyzed in order
to understand the kind of relationships that appear between object oriented techniques. It
gives a different lattice representation for a class level, too.

Moreover, the concept of mathematical foundation to identify grouping of objects that
have common features is adopted [19]. It has proved useful for understanding object-oriented

programs. An elementary notation convention for object-oriented programs is discussed first.

2. Reverse Engineering

Reverse engineering is a process that is used in many daily applications we may
frequently use in our lives. Reverse engineering can be defined as the analysis of a subject

system process in which system components and their relationships are identified, in addition
to creating representations of the system at a higher level of abstraction [7]. In other words,
reverse engineering is a process of extracting information from a source code concerning

software product design. The aim of reverse engineering is to remove ambiguity in the
software and understand the software system with respect to facilities, enhancements,

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-91-

redesign, and correctness. Moreover, reverse engineering provides facilities to help control
many managerial problems [8-10].

The tasks involved in reverse engineering are analysis of a subject system process,

which are identified systems components and their interrelationships [11]. The maintainer
spends a lot of time to understand all the activities of the problem and to correct it. Therefore

the focus of the reverse engineering process is to aid program understanding. In order to meet
this object in the above framework the reverse engineering effort must address the two central
issues in reverse engineering, namely, knowledge representation and automated extraction of

the knowledge representation [7][13]. The first object knowledge representation explicitly
represents the comprehensive activities of a programmer [12]. The object of second issue,

knowledge representation model is to ensure that the representation model as part of reverse
engineering approach is automatically extractable from the source code [18].

3. Lattice Model

The original concept of Lattice is introduced by Birkhoff [4]. It refers to a technique to

identify grouping of objects that have common attributes, which is to allow remarkable
insight into the structure of original relation[17]. Ever since the introduction of this concept
lattice, various slightly different notions for program dependence have been proposed,

together with methods for computing them. To serve our purpose, we choose to extend the
traditional concept of mathematical Lattice to cater for program relations that are more

amenable to object-oriented programs. Lattice technique for object-oriented programs would
involve capturing various combinations of features between classes as well as their
components that are considered important in software system. This section discusses

definitions of several concepts for lattice technique that bear strong relationships with features
of interest.

Definition:
An elementary context is a 3-tuple C=< E1, E2, R > where,

1. Ent(P) denotes the set an identifier (name) of a class or method, or a labelling of any
statement or variable in P.

2. Relationships R Dep(P),

3. Mtd(A) denotes the set method declared in the fields of class A.
4. Var(P) denotes the set variables in class A .

5. E1, E2 Ent(P) and the expression E1 R E2 is valid.

The context C can be used to identify the features of interest that may exist between

entities E1 and E2 in P.

Features can also be categorized according to levels. The first category, class-level

involves features of a class to another class. The second category, method-level involves
features of a method or a statement within a method to another method or variable in a class.
The final category, statement-level which are basically intra-method involving statements

within a given method. Context, in turn, can also be categorized according to such levels of
features as they intend to identify object.

The most general type of contexts is the class-level, which identifies class-level
features. This type of context intuitively excludes less number of elements compared to the
lower level of similar form of criterion. The general form of context criterion is C = < E1, E2,

R >, where R { i, ni, u, nu, a, na }.

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-92-

The concept analysis shows how any variable in V is being used or affected by class A
through class B. Essentially it will identify class A, B and all the intermediate classes linking

A to B if A and B are related through such features. However, if this is true, the parts of B and
intermediate classes that are related to variables in V with respect to the dependence relation
of interest are identified only. Method-level gives more refined view of the use and affects

features between classes.

 Lattice Layout

In this section, we provide a description of feature graphs for representing meaningful
features between entities of object-oriented programs. A formal description of the features

relations of interest is given before giving a representative illustration of object-oriented
program feature graphs using concept of lattice. A lattice representation approach represents

software components that will be affected due to any particular modification being made to a
certain component. The paper also discusses an approach for understanding object-oriented
programs through the use of lattice representation approach. The approach proposes the

construction of an automated tool to extract the feature information from the source code.
This model should be used interactively in the software phases to locate the features of a

given component of an object-oriented program [10].

Figure 1: Cylindrical Lattice Representation

 Cylindrical Lattice Representation

In the cylindrical lattice representation, we represent the lattice relationships between
object oriented techniques in simple way. To explain this representation we start with the

class C as a study class in a program P. We represent the relationships as edge between class
C and other classes in the same program. The lower base represents the program P and the
upper represent the class C. The cylinder may have several levels, each level represents an

attribute. Figure 1 shows the layout for cylindrical lattice representations with two levels only,
namely i and u.

 Package Lattice Representation
The cylindrical lattice representation given in the previous section is suitable for

program with several classes. However, package lattice representation is suitable for several
programs can be considered. This lattice representation can be generated from cylindrical

representation of single programs connected at joining points as related in the package. The

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-93-

diagram may get extremely complicated with huge number of classes and relationships,
however the package lattice representation simplifies the software system relation diagram
remarkably this can achieved in several different layouts. Examples of the package lattice

representations are shown in figure 2. They represent two cases, for simplicity, suppose class
C have relationships with other classes in programs P1, P2 , P3 and P4. The first case, nested

lattice representations will appear as shown in figure 2-A. This representation shows all
relationships between class C and all programs and classes at the same software package.

Figure 2: Lattice Package Layout

The second case, suppose class C in a program P1 is related to class T in a
program P2. The lattice representation in figure 2-B shows the nested representation
between programs P1 and P2, by selecting class C and class T to represent the study

classes. This lattice representation also shows the relationship between the two classes
with other software system.

4. Lattice Graph Representation for Class Level

In the section we demonstrate the use of concept analysis on a class level. The system

automatically extracts the information about the classes and accesses data. Concept analysis is
performed on a three main relationships between classes that can be emphasised and need to

be represented on a binary relation based on the following roles:

1. Inheritance: A i
B if and only if A is a subclass (derived class) of B.

2. Class using class: A u
B if and only if either one of the following holds:

a. m Mtd(A) and v Var(B) such that A.m u
B.v.

b. m Mtd(A), n Mtd(B), such that A.m u
B.n.

2. Class affecting class: A a
B if and only if m Mtd(A) and v Var(B) such that

A.m a
B.v.

The proposed lattice concept can be applied within software system tasks particularly for

understanding the features among elements of object-oriented programs. We foresee that
normal approach would be to formulate meaningful table relating various aspects of interests

see table 1. This table can be analysed and utilised. It includes all possible objects features to a
single object (PartNumber in this case).

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-94-

 Figure 3 presents a small example of five classes, the goal was to show how lattice
concept analysis can be used in order to understand this point of view. An analysis of Java
code program is conducted as an example for the lattice concept in order to clarify the

features. Hence, the context definition for this concept analysis starts with a triple C = < E1,
E2, R> for class PartNumber proposed as:

 C =<PartNumber, */class, R>

Where; */class represent the objects E2 that is restricted to the element “class” only, as
this example concentrates only on class relationships, R represent the relationships among

classes. Only three relations were considered here, namely inheritance, usage and affect.

Table 1 describes the features between class PartNumber and all other classes in

program P. Figure 3-A shows class PartNumber relations for this program that contains five
classes having several class features. Figure 3-A shows also a lot of interferences between
horizontal nodes; this modular structure is not good and even hard to understand, particularly

for a huge software system. These interferences can be detected and removed by algorithm
transformations using lattice concepts, figure 4. Figure 3-B and 3-C display the corresponding

lattice, horizontally decomposed. It is connected only via bottom up element. The
transformation algorithm, of figure 4, represents an algorithm for transformation from
complicated graph of figure 3-A to the lattice diagram of figure 3-B. For example, the relation

between class PartNumber and PartAssembly denoted by PartNumber R PartAssembly
is read from figure 3-A as {na, nu, i} by following three paths, while in figures 3-B and 3-C, it
is simply read from the single path connecting PartAssembly with PartNumber.
This shows how important the lattice concepts in reducing the relation difficulty.
Furthermore, the relations between all classes in P with PartNumber are denoted by

PartNumber R * (where * represent all classes in P) is clearly shown in the lattice matrix
and far more easily readable.

Public class PartNumber

public class Part

{

public double Cost(){

 const = 0;

 private:

 PartNumber itsPartNumber= new PartNuber();

 String Description;

 }

}

public class Assembly extend Part

{

 Public double Cost(){…}

 Part itsParts = new Part();

}

class PiecePart extend Part

{

 public double Cost() {

 private double itsCost;

 PartNumber itsPartNumber = new

PartNumber();

}

}

Public class PartAssembly extend Part

{

private PartNumber

 Assembly aAssembly= new Assembly();

 cost(){…..}

}

Figure 3: Simple Program

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-95-

Figure 4: Lattice Representation

Figure 4: Lattice Algorithm

Furthermore, we describe a prototype implementation for lattice concept principle in
order to visualize the lattice cylinder representations. Another java code program is used as an

example for this implementation.

5. The embedded method representation (Method level)

In the section we demonstrate the use of concept analysis on a Draw3D class. The
system automatically extracts the information about the methods and accesses data. Concept

analysis is performed on a binary relation between set of behaviors and attributes based on
object oriented program features.

Input: a program P, class A.

Output: linear lattice representation

Method

Begin

 Select a class A from a program P

Search for all features relations

Search all classes has unique relationships Between where d unique with y

Draw a node p.

Find a lattice dummy node

Repeat

 Find a group of classes that have a common relation ships with class A.

Start with the first node in lattice diagram that has a common relationship with A.

Find a path from Yi

d

 A through the relation Yi
d

A where d={i, u, a, ni, nu, na}

Until no more classes Yi = {}.

End

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-96-

In the analysis of Draw3Dclass, we use the attributes and the class behaviors as features.
Hence, we use the binary relation to specify the class behaviors used or affect each attributes.
The system is classified into direct or indirect embedded method representations.

We obtain the embedded method representation which provides a more detailed
visualization of the class. Since a concept lattice for methods use the same set of fields, it does

not provide information about the interaction between these methods. Examining the concept
lattice does not reveal whether a method accesses a combination of fields directly, by
accessing their values, or indirectly, by invoking methods that access them directly. By

superimposing the method representation on the class concept lattice,

A method representation is a graph derived from the cylinder representation in which

nodes represent methods and edges represent method-invocations. This graph is a common
means of visualizing the interaction between the methods of a class.

In the embedded representation, the methods of each concept are grouped together.

Groups are explicitly marked and are connected with edges, creating the lattice structure. In
order to demonstrate how the embedded representation can provide important information

which does not appear in the concept lattice, suppose that the class contains method, named
setYX, which modifies the values of the x and y fields. If method setYX modifies the two
fields by invoking methods setX and setY directly, then the corresponding embedded method

representation shows the symmetry between methods setYX and setXY.

Unlike general graph layout algorithms, an embedded method representation layout is

based on semantics, and group related methods together. Also, we believe that because of its
inherent properties, an embedded method representation layout has less crossing edges than
an unoptimized graph layout. We base this claim on the property that an edge leaving a

method in some concept in the embedded method representation can only reach a method in
the same concept or in another concept that is dominated by the first. Therefore, the edges for

method calls that occur in separate parts of the class do not cross in the embedded method
representation.

6. Implementation and Result

We have implemented a model prototype that employs lattice concept to achieve

visualization suitable for understanding object oriented program. This prototype takes an
object oriented program and builds a context based on object oriented features. The system
builds lattice cylindrical representation and investigates on a class level. In particular, we have

used the prototype model for testing various programs and systems written in java. Figure 5
presents an example of eight classes having various relationships which are organized in

several common blocks. After the features table is built for a selected class of them, for
example the class Geometric Object, the features graph is constructed as in figure 5-A. It
shows so many features, making it difficult to follow. Applying the lattice concept for such

result, would lead to the modularized lattice diagram in cylindrical representation, figure 5-B.
The model allow any class to be chosen in order to see its relationship with all others classes

as shown in figure 5-D and 5-C.

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-97-

(A)

(B)

(C)

(D)

Figure 5: Prototype and System Result

7. Conclusion

This paper provides the overall architecture of the proposed lattice model. The model

is embedded in the software engineering environment. We also, discusses concepts lattice
suitable for understanding object-oriented programs. We provide some insights into the
relation behind the high-level relationships between the components. Class and component

features are more natural in supporting the process of understanding the structure and
behaviour of object oriented programs. Based on the identified grouping of objects that have

common features, concepts lattice have been developed for understanding object-oriented
programs. We also highlight the potential application of this new approach by providing an
illustration for cylindrical lattice representations. This paper discusses an embedded method

representation which can be used in order to efficiently read the source file.

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-98-

References

[1]. Snelting, G. and Tip, F., “Reengineering Class Hierarchies Using Concept

Analysis”, ACM Trans. Programming Languages and Systems, 1998.

[2]. D. G. Kourie, S. Obiedkov, B. W. Watson, D. V. D. Merwe, An incremental

algorithm to construct a lattice of set intersections, Science of Computer
Programming, 74(2009), 128-142.

[3]. J. Muangprathub, V. Boonjing and P. Pattaraintakorn, A new case-based

classification using incremental concept lattice knowledge, Data & Knowledge
Engineering, 83(1) (2013), 39-53.

[4]. Jirapond Muangprathub, “A Novel Algorithm for Building Concept Lattice”
Applied Mathematical Sciences, Vol. 8, 2014, no. 11, 507 – 515.

[5]. Ra'Fat Al-Msie, Marianne Huchard, Abdelhak Seriai, Christelle Urtado and Sylvain

Vauttier “Reverse Engineering Feature Models from Software Conjurations using
Formal Concept Analysis” CLA 2014: Proceedings of the Eleventh International

Conference on Concept Lattices and Their Applications pp. 95-102, 2014

[6]. Krone, and Snelting, “On the Inference of Configuration Structures from Source
Code”, Proc. 16th International Conference on Software Engineering, May 1994,

IEEE Comp.Soc. Press, PP. 49-57.

[7]. Linding, C. and Snelting, G., “Assessing Modular Structure of Legacy Code Based

on Mathematical Concept Analysis”, Proc. 19th International Conference on
Software Engineering, May 1997, IEEE Comp. Soc. Press, PP. 349-359.

[8]. Siff, M and Reps, T., “Identifying Modules via Concept Analysis”, Proc.

International Conference on Software Maintenance, Bari 1997, PP. 170-179.

[9]. Snelting, G. “Software Reengineering Based on Concept Lattices.” In Proceeding 4 th

European Conference on Software maintenance and Reengineering, page 3-12.
IEEE, 2000.

[10]. Snelting G. “Reengineering of Configurations Based on Mathematical Concept

Analysis”, ACM Trans. On Software Engineering and Methodology, vol. 5, no. 2,
pp. 46-89, 1996.

[11]. Godin R. and Mili H. “Building and Maintaining Analysis-Level Class Hierarchies
Using Galois Lattices”, In proceedings of the eighth annual conference on object-
oriented programming systems, languages, and applications, pages 394-410. CM

Press, 1993.

[12]. Birkhpff G., “Lattice Theory”, America Mathematical Society, Providence, R. I. 1st

edition 1940.

[13]. Godin R., Mili H., Mineau G. W., Missaoui R., Arfi ., and Chau T., “Design of class
hierarchies based on concept (galois) lattices”. Theory and Application of Object

Systems, 4(2):117–134, 1998.

[14]. Snelting, G. and Tip, F., “Understanding Class Hierarchies Using Concept

Analysis”, ACM Trans. On Programming Languages and Systems, pages 540-582,
May 2000.

Egyptian Computer Science Journal Vol. 39 No. 4 September 2015 ISSN-1110-2586

-99-

[15]. Funk P., Lewien, and G. Snelting, “algorithms for concept Lattice Decomposition
and their application”, Technical Report, Computer science Dept, University of
Technische, Braunschweig, 1995

[16]. Dekel, Uri; Gil, Y. “Revealing class structure with concept lattices”, Proceedings of
WCRE: 10th Working Conference on Reverse Engineering, 13-16 Nov. 2003. pp.

353 – 363, DOI. 10.1109/WCRE.2003.1287267.

[17]. Duquenne, V., Chabert C., Cherfouh A. and Doyen A., “Structuration of
Phenotypes and Genotypes through Galois Lattices and Implications”, Applied

Artificial Intelligence 17:243-256. 2003.

[18]. Chaudron L., Maille N., and Boyer M.., “The Cube Lattice Model and Its

Applications”, Applied Artificial Intelligence 17:207-242. 2003.

[19]. Ahmed Fouad Ali, "Accelerated Bat Algorithm for Solving Integer Programming
Problems", Egyptian of Computer Science Journal, Volume 39, Issues No. 1, 2015.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Dekel%2C%20Uri.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Gil%2C%20Y..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1287267&matchBoolean=true&searchWithin%5B%5D=%22First+Name%22%3AUri&searchWithin%5B%5D=%22Last+Name%22%3ADekel&newsearch=true
http://dx.doi.org/10.1109/WCRE.2003.1287267

