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    Abstract 

Patch-based prior learning algorithm is capable of delivering state-of-the-art performance in image 

denoising. The major concern that affects the patch-based restoration algorithms is the accuracy of the patch 

priors. Our work is based on the extension of the Gaussian Mixture Model (GMM) estimation which is developed 

to iteratively capture and process data incrementally. In this paper, we introduce an image denoising framework 

that uses patch prior learned online refines Gaussian mixture model incrementally. This model decides if we can 

merge two given Gaussians without drifting from the real data distribution. An incrementally learning mixture 

model helps to reduce the complexity of the model while still giving a precise description of the observations. 

The results show that the proposed method generally achieves comparable performance to the conventional 

approach, while producing models at lower training time without any compromise with the model accuracy. 

Keywords: Gaussian mixture model, Image denoising, Expectation Maximization, Incremental learning. 

 

1. Introduction 

Image denoising is a significant task in the digital image processing applications, which requires a robust 

method to accomplish this task. The goal of image denoising is to remove imperfections caused by poor image 

sensors or artifacts which appear during data acquisition process [1]. The challenge of most image denoising 

approaches is to recover images contaminated by noise while producing sharp images without losing fine details 

or obtaining blurring edges [2]. In the last decade, software-based denoising approaches had become more 

popular and widely applicable. These methods had been proposed and a considerable improvement in denoising 

performance was achieved. Most denoising approaches which used techniques such as the Lucy-Richardson 

algorithm, Wiener filtering, and least-squares are always generating unwanted artifacts which makes it hard to 

determine whether features learned by such models represent a  true property of natural images or not [25]. Levin 

et al. [4] introduced an approach by incorporating priors derived from natural image statistics. However, learning 

whole image distribution is a tremendous computational challenge because images are almost of high 

dimensions, non-Gaussian and continuous signals.  

Due to the computational difficulty, tasks such as learning priors and likelihood estimation are set to use 

small image patches rather than working with whole images directly. So, instead of processing each image pixel 

individually, the block-based (or patch-based) approaches have been introduced [5]. 

Recently, a new denoising approach is proposed based on image internal self-similarity prior and external 

patch priors [3]. Similar patches from clean images are clustered and subspaces are learned by utilizing (GMMs). 

Finally, the learned GMMs are used to guide the clustering of noisy patches followed by a low-rank 

approximation process to estimate the latent subspace for image recovery [3]. In [6], an improved image 

denoising framework based on spatially constraining GMM prior for the image patches is proposed. By 

assuming the same multivariate normal distribution for underlying similar patches in a neighborhood, the 

weights are averaged for the pixel estimations based on the similarity of the estimated patches to their 

corresponding clusters. 

Image prior plays a critical role in image denoising problem. Simplicity, Gaussian mixture prior is popularly 

used as it is easy to be learned and to perform denoising by finding the Maximum a posterior (MAP) estimate of 

a corrupted patch [7]. In the proposed framework, a probabilistic approach via GMM has been learned to 

develop a filter where the parameters are computed using trained image patches. The goal is to find a recovered 
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image in which every patch is likely under the modelled prior while keeping the denoised image still close to the 

true one.  

2.  Gaussian Mixture Prior 

Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov 

models have played a key role for the statistics of natural image patches. Recently, there has been a growing 

interest in comparing various models for natural images such as log-likelihood and multi-information reduction 

performance, and much progress has been achieved [8]. The GMM model has shown interesting results due to its 

simplicity and ubiquity. It uses a small number of mixture components learned from image patches to model 

image statistics. Hence, a mixture model consisting of a number of densities can be used  to  construct a 

satisfactory model to discriminate between different classes. The most important class of finite mixture models is 

Gaussian mixtures [9]. The reason for the importance and widespread use of Gaussian mixtures is its simplicity 

and its concise representation requiring only two parameters: mean and variance. Also, Gaussian density is 

symmetric, and assumes least prior knowledge in estimating an unknown probability density [10]. These 

characteristics of the Gaussian distribution along with its well-studied status give Gaussian mixtures the power 

and effectiveness over other mixture densities. By assuming that an image consists of a set of clusters, mixtures 

of Gaussian functions obviously are well suited to model these clusters. The GMM is a multidimensional 

probability density function (PDF). It is the sum of Gaussians each has its mean (location), covariance (shape), 

and a probabilistic assignment of every data point to the Gaussians.  

Maximum-likelihood estimation has been one of the most widely used approaches for estimating the 

parameters of mixture models [11]. Gaussian mixture model is a parametric PDF represented as a weighted sum 

of Gaussian component densities, while the model parameters are usually estimated from well-trained prior 

information using the expectation-maximization (EM) algorithm. The EM algorithm is an efficient iterative 

procedure to find maximum likelihood or (MAP) estimation [10]. The log-likelihood should be evaluated before 

maximum likelihood estimation. The EM algorithm has number of properties that rank it as an attractive 

algorithm for mixture models analysis. It satisfies the probabilistic constraints without the need to set a learning 

rate. One major drawback of the EM algorithm is that it converges slowly, especially when mixture components 

are not well separated. The EM algorithm seeks to find the Maximum Likelihood Estimate (MLE) in the 

presence of missing or hidden data by iteratively applying the following two steps: The Expectation step (E-

step), and Maximization step (M-step). In the E-step, the missing data are estimated given the observed data and 

current estimate of the model parameters. That creates a function for the expectation of the log-likelihood 

evaluated using the current estimate for the parameters. In the M-step, the likelihood function is maximized 

under the assumption that the missing data are known [12]. Parameters maximizing the expected log-likelihood 

found on the E-step are computed and then used to determine the distribution of the latent variables in the next 

E-step. 

Several clustering methods are based on a distance or dissimilarity measures. However, clustering analysis 

using mixture models has become an effective and powerful approach. In the proposed method, we introduced 

clustering the patches via learning a finite Gaussian mixture model over the pixels of natural image patches. The 

GMM model is learned without any constraints on the model, learning is performed on the means, full 

covariance matrices and mixing weights, over all pixels [13]. In the problem of patch denoising, the model of 

image corruption is supposed to have the following formulation: 

                                                                         y                                                                                               (1) 

where y represents a corrupted image, x is a true image, A is a corruption matrix and w is an additive white 

Gaussian noise with known standard deviation. The work presented here is based on an optimization algorithm 

that maximizes expected patch log-likelihood (EPLL) framework [7] using GMM prior for image restoration. 

The EPLL achieved superior results rather than the previous methods which have used the same prior. 

3. Related Work 

In many practical applications, the collection and analysis of training data is costly and time consuming. 

Consequently, the performance of a generative model like GMM depends heavily on the availability of an 

adequate amount of representative training data to estimate its parameters. In practice, data for training GMM is 

often limited, and may over time no longer be representative of the underlying data distribution. In static 

environments, where the underlying data distribution remains fixed, designing a GMM with a limited number of 

training observations may significantly decrease performance. This is also the case when new information 

emerges in dynamically changing environments, where underlying data distribution varies or drifts in time.  
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Since limited training data are typically employed in practice and underlying data distribution is susceptible to 

change, a system based on GMMs should allow for adaptation in response to new training data from the 

operational environment or other source. The ability to efficiently adapt GMM parameters in response to newly 

acquired training data, through incremental learning, is therefore an undisputed asset for sustaining a high level 

of performance. Indeed, refining a GMM to novelty encountered in the environment may reduce its uncertainty 

with respect to the underlying data distribution. With incremental learning, GMM parameters should be 

efficiently updated from new data without requiring access to the previously learned training data. In addition, 

parameters should be updated without corrupting previously acquired knowledge. 

One of the main challenges of the incremental learning of GMMs is the model complexity selection which is 

required to be dynamic due to the nature of the incremental learning framework. Apparently, there is no increase 

in the number of Gaussian components when a single novel point arrives while all information available at any 

time is the current GMM estimate. Another closely related difficulty lies in the order in which new data arrive. If 

successive data points are always badly correlated, then a large amount of data has to be kept in memory until 

accurate model order update is achieved [18]. Incremental fitting of GMMs has already been addressed in the 

machine learning literature. Hall et al. [19] merged Gaussian components in a pair-wise manner by considering 

volumes of the corresponding hyperellipsoids. In [20], the Gaussians are assumed to be grouped using the 

Chernoff  bound to detect overlapping Gaussians. Then different thresholds on this bound are tested and the most 

likely result is kept as the simplified GMM, but this method is too slow for an on-line process. Hicks et al. [20] 

proposed to “concatenate” two GMMs firstly and then the optimal model sorted by considering models of all low 

complexities and the one that gives the largest penalized log-likelihood is finally chosen. Verbeek et al. [21] 

gradually increased the number of components in a GMM by using a greedy algorithm. A heuristic for searching 

for the optimal component is used to insert mixture components into the mixture one after the other. 

Both Yangd [22] and Figueiredo [23] assume that a GMM that contains too many components has been fitted to 

the data, and the number of components is reduced by discarding “weak" ones. Both methods achieved a 

considerable increase in efficiency over standard EM, but they require access to past data.  

An incremental updating of the density model is performed in [18] using no historical data and the 

consecutive data are assumed to be varied smoothly. In this method, the current GMM estimation, and a previous 

GMM of the same complexity after which no model updating has been done. By comparing the current GMM 

with the historical one, it is determined if new Gaussians are generated or some Gaussians are merged together. 

This algorithm fails when new data are well explained by the historical GMM, and when consecutive data infract 

the condition of smooth variation. 

4. Expected Patch Log Likelihood Framework-EPLL 

Under a predefined patch prior p, EPLL aims to minimize the following cost in order to find the 

reconstructed   image [9]: 

                                                           ( | )  
  

 
 ‖    ‖       ( )                                                           (2) 

where   is a tuning parameter related to the noise variance 
 

  
 . Assuming a general image corruption model to 

keep the restored image x close to the corrupted image y, with the constraint that ‖    ‖ . In image denoising 

problem matrix A is set to the identity. 

The Expected Patch Log Likelihood to be maximized under prior p is defined as: 

                                                                      ( )  ∑     
 
   (   )       ,                                                                (3) 

where       is a mask which extracts the i-th patch from image x that organized as vectors and       (   )  is the 

likelihood of the i-th patch under the prior p. The Expected Patch Log Likelihood       ( ) is not the log 

probability of a full image, but it is the sum of log likelihood of all the N patches. 

Optimize the cost function directly is intractable, so an alternative optimization method called Half Quadratic 

Split [14] has been introduced. It defines    as a set of per-patch auxiliary variables means that it is a set of 

patches, one for each overlapping patch     in the original image x and   is set to 
 

  
. Now the new cost function 

becomes:  
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The EPLL optimization involves two steps [7]:  

(1) Solving for x given  *  +  that yields : 

                                            ̂   (      ∑   
 

   )
  
  (       ∑   

 
   )                                                       (5) 

which means that the solution for x at each optimization step is just a weighted average between the noisy image 

y and the average of pixels as they appear in the auxiliary overlapping patches.  
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(2) Solving for *  + given x, this is dependent on the prior and involves estimation a MAP of the most likely 

patch under the prior , for each iteration value of  β  is kept constant.  

                                                            
 

 
(‖      ‖

 
)       (  )                                                      (6) 

The solution for    is just a MAP estimate with prior p and noise level√(   ) . For each β, the current estimated 

image is averaged with the noisy one and obtaining a new set of    patches, solving for them and then obtaining 

a new estimate for patch x. 

5. Learn Patch Priors with GMM 

The GMM is learned over small patches, the GMM prior outperforms other priors in both patch and whole 

image restoration. The GMM is based on the Bayesian and it is considered a flexible and powerful statistical 

modeling tool for multivariate data. The main advantage of the GMM that its simplicity to implement and that it 

requires a small number of parameters. GMM describes natural image patches with a mixture of Gaussian 

distributions which is a combination of pdf’s. The probability density function is defined as: 

                                                             ( | )  ∑     
 
   ( |     )                                                                         (7)                      

where    *        +   
  is the parameter set of GMM,  here    are mixing weights for each mixture satisfy 

            is the mean matrix ,      is the covariance matrix of mixture component and k is the number of 

mixture components. Each Gaussian distribution is called a component of the mixture which has its mean and 

covariance [15]. The Gaussian distribution of the component k is defined as follows: 
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The estimation of the component density parameters is carried out by EM algorithm which is employed to 

maximize the log-likelihood of the given data set. For a given patch, the log-likelihood function of the standard 

GMM is given by: 

                                                           ( )     (  ∑     ( |     )
 
   )                                                          (9) 

Patch de-noising is performed using the approximate MAP procedure described as follows: 

1.For each noisy patch x, calculate log PDF of Gaussian with zero mean for each component, we call it       .  
2. Choose the component with the highest log probability              (    ) . 

3. Approximate MAP estimate  ̂  solution for the      –th component as follows:   ̂ =(       
  )

  
(      ) 

6. Experimental Results 

In the presented work, we have used GMM with few prior assumptions, as the number of components in the 

mixture and the size of learned patches. In all experiments,   is set to         where N is the number of pixels 

in each patch. We evaluated the GMM by varying the number of mixture components and the size of the image 

patch. Learning patches is performed using an incremental EM algorithm [17]. For the proposed GMM model, 

the values for    were set to   √ .[1, 4, 8, 16, 32, 64], where M is the patch size. Each model trained on 6x6 

pixels of overlapped patches and 8x8 pixels of non-overlapped patches. These patches are randomly sampled 

from chest screening CT from JAMIT medical image database [16] and DC component of all patches is 

removed. 

6.1. Analysis of Results 

We compare the denoising performance of the EPLL-GMM model trained with different number of 

components and different patch size. Our goal is to evaluate both the number of components and size of the 

patch used in training in dance performance. An independent white Gaussian noise with known standard 

deviation is added to each test image. The performance of our approach is experimentally verified on a variety of 

images and noise levels. The main goal of our work is to demonstrate that a GMM with a relatively small 

number of components is able to give better results than the original model with lower training time. Here we 

evaluate the GMM by varying the number of components and the size of the image patch. First, the proposed 

GMM model is trained with 50 mixture components from a set of 2x    patches sampled from CT image dataset 

[16], then we increase the number of components to be 100 mixture. We trained GMMs with unconstrained 

means and full covariance matrices using EM. Training is performed by incrementally learning a Gaussian 

mixture model using the means of a merge and/or split operations that combine similar components of GMM. In 

this method Deleclerq and Piater [17] assumed that each data is a Gaussian with a predefined covariance and a 

subset of the data can be replaced by a single component to reduce the complexity of the model while still giving 
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a precise description of the observations. An independent white Gaussian noise with known standard deviation is 

added to each of the test images. We calculate the MAP estimate   ̂ of each model given the noisy patches. For 

those models where the MAP estimate does not have a closed form. We have used a numerical approximation as 

in section 5.  

6.1.1. Performance Metrics 

The performance of each model was measured using Peak Signal to Noise Ratio (PSNR): 

                                                                                       (
 

‖   ‖ 
)                                                          (10) 

where x is the original image and y is the recovered image. Training the proposed model used a set of 5000 

patches (with 50 mixture components) takes around one hour on Intel (R) core™ i5, CPU @ 2.5 GHz, while 

taking approximately 6h for training by the original EM algorithm. 

Table 1 shows the results obtained with the proposed EPLL-GMM compared with results obtained by training 

10000 patches (with 100 mixture components) using original EPLL-GMM. The results in Table 1 are obtained 

by denoising chest CT from [16]. Under three noise levels, the PSNR values in Table I show that the proposed 

method leads to an improvement in average with different cases. Table 1 demonstrates the differences in PSNR 

values when small patch size trained, results show that trained 6x6 patch also achieved good results compared 

with the original EPLL-GMM. 
Visually, the difference is not noticeable, so another image quality metric should be used to qualify an 

image. Contrast to noise ratio (CNR) is used as a measure instead of image contrast in order to have a better 
measure of the image quality. A higher CNR value is necessary to distinguish among different tissue types, and 
in particular between a healthy tissue and a pathological tissue. The CNR value evaluates the ratio of the contrast 
of a target structure in the image and the standard deviation of statistical noise. The CNR between two tissues is 
defined in terms of their noise respective signal noise-to-ratios of the two tissues: 

                                                                        |     |                                                                          (11)          

where       is the relationship between pixels intensity differences    and    of tissues A and       is the 

standard deviation of the noise. 

With 100 EM iterations and 5000 patches of size 8×8, the training time with the incremental GMM takes about 

204.203 seconds, while using 6×6 patches takes about 187.381 seconds and done with 85 EM iterations only. 

The log likelihood of the GMM prior learned from 6×6 patches and 8×8 patches using the incremental GMM 

converges faster using 6×6 patches, although GMM prior gives higher likelihood using 8×8 patches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The denoising results demonstrate that proposed method is exceeding the original EPLL, both visually and 

quantitatively. From Fig 1 we can note how details are much better preserved in our method when compared to 

original EPLL-GMM. In Fig 1 the chest CT image is taken as an input image and Gaussian noise with 𝞼 =25 is 

added then we calculate PSNR and CNR value for the denoised images. From that, results clearly indicate that 

 

 

 

 
Image 

Original 

EPLL-

GMM 
(10000 

patch 

with 100 
mixture) 

Proposed 

EPLL-

GMM 
(5000 

patch 

with 50 
mixture) 

Proposed 

EPLL-

GMM 
(10000 

patch 

with 50 
mixture) 

 Patient (1) 

Pulmonary 
Tuberculosis 

𝞼 =15 32.89 32.65 32.55 

𝞼 =25 30.32 30.69 30.38 

𝞼 =50 26.60 27.99 27.41 

       

Patient (2) 

Hypersensitivity 
Inflammation 

𝞼 =15 29.21 29.77 29.69 

𝞼 =25 27.25 27.67 27.56 

𝞼 =50 24.77 25.14 25.00 

     

Patient (3) 
Cancer 

(adenocarcinoma) 

𝞼 =15 30.20 30.55 30.58 

𝞼 =25 27.96 28.35 28.28 

𝞼 =50 25.00 25.40 25.52 

 

 

 

 

 
Image 

Original 

EPLL-

GMM 
 (10000 

patch with 

100 
mixture) 

Proposed 

EPLL-

GMM 
(5000 

patch with 

50 
mixture) 

Proposed 

EPLL-

GMM 
(10000 

patch with 

50 mixture) 

Patient (4) 

Calcification 
 𝞼 =15 30.52 30.71 30.57 

𝞼 =25 27.92 28.23 28.35 

𝞼 =50 24.69 25.05 25.06 

       

Patient (5) 

Chronic 
Inflammation 

 𝞼 =15 31.78 31.43 31.39 

 𝞼 =25 29.57 29.45 29.28 

 𝞼 =50 26.41 26.71 26.59 

     

Patient (6) 
Inflammation  

 𝞼 =15 29.14 29.74 29.74 

 𝞼 =25 27.18 27.52 27.60 

 𝞼 =50 24.33 24.62 24.70 

 

Table 1. Values of psnr (db) of denoising based original EPLL-GMM compared with the 

proposed method for different patients at various noise variance. 

(a) Training using 8×8 patches 

 

(b) Training using 6×6 patches 
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Image 

Original EPLL-
GMM 

 

Proposed EPLL-

GMM 
 

NCC NAE NCC NAE 

 
Patient (1) 

Pulmonary 

Tuberculosis 

𝞼 =15 0.9975 0.0437 0.9980 0.0399 

𝞼 =25 0.9958 0.0537 0.9965 0.0508 

𝞼 =50 0.9938 0.0737 0.9913 0.0727 

     

Patient (2) 

Hypersensitivity 
Inflammation 

𝞼 =15 0.9973 0.0426 0.9981 0.0397 

𝞼 =25 0.9962 0.0532 0.9967 0.0510 

𝞼 =50 0.9935 0.0723 0.9919 0.0717 

      

Patient (3) 
Cancer 

(adenocarcinoma) 

𝞼 =15 0.9978 0.0449 0.9980 0.0410 

𝞼 =25 0.9962 0.0558 0.9665 0.0533 

𝞼 =50 0.9923 0.0770 0.9943 0.0759 

 

 

 

 

Image 

Original EPLL-
GMM 

 

Proposed EPLL-

GMM 
 

NCC NAE NCC NAE 

Patient (4) 

Calcification 

𝞼 =15 0.9987 0.0339 0.9982 0.0323 

𝞼 =25 0.9971 0.0421 0.9971 0.0411 

𝞼 =50 0.9947 0.0587 0.9953 0.0602 

     

Patient (5) 

Chronic 
Inflammation 

𝞼 =15 0.9983 0.0349 0.9943 .0622 

𝞼 =25 0.9968 0.0439 0.9975 0.0426 

𝞼 =50 0.9940 0.0621 0.9442 0.0622 

      

Patient (6) 

Inflammation 

𝞼 =15 0.9984 0.0351 0.9986 0.0327 

𝞼 =25 0.9970 0.0435 0.9970 0.0426 

𝞼 =50 0.9940 0.0615 0.9943 0.0623 

 

Table 2. Comparison of NCC and NAE results of proposed method and original method at different noise levels 

 

(a) Training using 8×8 patches 

 

(b) Training using 6×6 patches 

 

proposed method trained using large mixture components having highest PSNR and CNR values. In Fig 2, the 

red square region shows how the proposed method provides a higher resolution image with clearer image details 

than the original EPLL-GMM method. 

As we carry out a comprehensive empirical evaluation of the performance of these algorithms in terms of 

accuracy and running times. The results reveal that denoising using smaller patch size reduces the running time. 

The experiments are evaluated with Matlab implementation, running time of denoising based 8×8 patch size 

takes about 101.652s while using 6×6 patch size takes about 51.259s, while not affecting the denoising quality. 

The performance of the proposed image denoising approach also evaluated quantitatively based on the original 

and the denoised scene images 

 

One of the widely used methods to compute the correlation between two images is similarity measurements 

such as Normalized Cross Correlation (NCC) [24] which is calculated by: 

                                                          
∑ ∑  (   )  (   )   

   
   
   

∑ ∑  (   )    
   

   
   

    ,                                                            (12) 

where x(m, n) is the original image and y(m, n) is the restored image. If the normalized cross correlation tends to 

1, then the image quality is seemed to be better. 

Normalized absolute error (NAE) [24] is a criterion to evaluate the ability of preserving the information of the 

original image where larger value of NAE means a poor quality of the image. It is defined as follows: 

                                                                   
∑ ∑ | (   )  (   )|   

   
   
   

∑ ∑ | (   )|   
   

   
   

                                                                    (13) 

In order to verify the reliability of our proposed approach, all test samples were degraded with Gaussian 

white noise of different levels 15, 25 and 50 respectively. The experimental results of denoising with the 

proposed and the original method are assessed and computed using NAE and NCC. Table 2 exhibits the 

experiment results which prove that the proposed method results achieved less NAE values compared with the 

original method. The experiments in Table 2 are performed using 5000 patches with 100 mixture components. 

Also, Table 2 shows that the proposed method achieves higher NCC values than the original EPLL-GMM even 

if the 8×8 or 6×6 patch size is used. 
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(C) Denoising using the original                      
EPLL with PSNR=24.63, 

CNR =15.58 

(a) Original image 

 
(b) Noisy image 

 

(e) Denoising using proposed method 

trained using 5000 patches with 100 

mixture components, PSNR= 29.24, 
CNR=24.32 

 

(d) Denoising using proposed method 
trained using 5000 patches with 50 

mixture components, PSNR=26.96, 

CNR=20.28 

 

 

Figure 2. Visual quality comparison for denoising an image corrupted by Gaussian noise, 𝞼 =50. 

 

(d) Denoising using proposed 
method trained using 5000 

patches with 50 mixture 

components, PSNR=30.68, 
CNR=20.49 

 

(e) Denoising using proposed 
method trained using 5000 

patches with 100 mixture 

components, PSNR= 33.33, 
CNR=26.49 

 

(a) Original 

image 

(b) Noisy image 
 

(C) Denoising using original 

EPLL- GMM with 
PSNR=24.24, CNR =15.5 

 

Figure 1. Denoising results using original EPLL-GMM compared with the proposed       

method using PSNR and CNR as image quality measurements. 
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7. Conclusion 

In this paper, we proposed a new framework for the whole image denoising based patch models using 
incrementally learning a Gaussian mixture model based on a new criterion for splitting and merging mixture 
components. We also optimized the initialization parameters to enhance the performance under different noise 
levels. Our model performed better denoising results and it achieved an improvement in image quality using 
fewer training time than conventional. Future work will thus be devoted to improvements by incorporating some 
artifacts and different noise type.  
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