
Egyptian Computer Science Journal (ISSN-1110-2586)

Volume 41– Issue 2, May 2017

-30-

Parsing Strings Using a Subset of the Production

Rules of the C-language
1
I. A. Ismail,

2
N. Amein. Ali

1
Department of Computer Science &6 October University in Cairo, Egypt.

2
Institute of Suez of Management information systems, Suez, Egypt.

 Amr44_2@hotmail.com, Nabil92471@gmail.com

Abstract

The parsing is applied to the given c-language which is a context free grammar (CFG)

language, i.e., any CFG language together with its productions could be parsed as an LL(1)

grammar language giving its parsing table and the parsing results to any input string.

Keywords: context free grammar (CFG), LL(1), first, follow; input string.

1. Introduction

In natural languages, sentence correction using grammar rules is a part of natural

language processing. Such implementation in computer field requires syntax parsing and

syntactical analysis of a sentence[1]. The grammars that describe these languages should be

given and simple. Nevertheless, we don’t deal here with natural languages but with formal

languages. These formal languages are mainly programming languages that have their own

grammars while their vocabulary is much less in length than the natural languages. We are

interested in this research paper in top down parsing. In this paper we deal with context free

grammar (CFG) which the programming languages are part of it.

First we start with the given production rules then we manipulate with these production

rules to get the required language strings, which we will inspect its acceptance or rejection.

This will necessitates that we should consider the compilation of some sentences with specific

lengths, and compiling them by producing the necessary parsing tables.

These parsing tables are produced under different parsing rules. We consider first some

of the parsing rules and then design c program that may compile some strings that satisfy

these rules, by creating their parse tables first and then using these parse tables to compile

some given input string. Nevertheless, we can change the production rules to produce some

different language which we can use in programming and see the suitable strings that could be

accepted using the compiler in hand and compilation rules in hand.

2. Programming languages and CFGs

When we design a compiler, a precise description of the language is needed. Among the

ways in which programming languages can be defined precisely, context free grammars

(CFGs) are perhaps the most widely used ones. Actual programming languages have many

features that can be described elegantly by means of context-free languages. What formal

language theory tells us about context-free languages that it has important applications in the

design of programming languages as well as in the construction of efficient compilers [2]. The

Egyptian Computer Science Journal (ISSN-1110-2586)

Volume 41– Issue 2, May 2017

-31-

CFGs can describe any typical language like C or any other programming language as we will

see in the next section [2].

3. C-notations as a subset of production rules using CFG

When writing a CFG for a programming language like C, one normally starts by

dividing the constructs of the language into different syntactic categories. A syntactic

category is a sub-language that embodies a particular concept. Examples of common syntactic

categories in programming languages are Expressions, Statements and Declarations.

When the nonterminal term appears to the L.H.S it is termed the main terminal, if not, it

is termed the nonterminal. Each syntactic category is denoted by a main nonterminal. More

non terminals might be needed to describe a syntactic category or provide structure to it, as

we shall see, and productions for one syntactic category can refer to non-terminals for other

syntactic categories. For example, statements may contain expressions, so some of the

productions for statements use the main nonterminal for expressions [3].

Example1: In the following C statement, CFGs systematically describe the syntax of

the C programming language constructs like expressions and statements [4]. Using a syntactic

variable stmt to denote statements and variable expression to denote expressions, the

production rules of figure (1) specify the structure of the form of expressions and define

precisely what an expression is while the production rules of figure (2) specify some

conditional C statements.

expression = expression op expression

op = +|-|*|/|<|>|==|<=|>=

expression =num

expression =(expression)

Figure 1. Simple expression grammar

stmt= id = expression ;

| if (expression) stmt

| if (expression) stmt else stmt

| while (expression) stmt

| do stmtwhile (expression) ;

| for (optexpr ; optexpr ; optexpr) stmt

expression = expression op expression

op = +|-|*|/|<|>|==|<=|>=

expression =num

expression =(expression)

optexpr —> e

Figure 2. A CFG for a subset of C statements

Where, expression, stmt and optexpr are nonterminal while +, -, *, /, (,),numand e

(empty string) are terminals.

We must know that, all Constructs that begin with keywords like while or int, are

relatively easy to parse, because the keyword guides the choice of the grammar production

that must be applied to match the input. We therefore concentrate on expressions, which

Egyptian Computer Science Journal (ISSN-1110-2586)

Volume 41– Issue 2, May 2017

-32-

present more of challenge, because of the as sociability and precedence of operators. For

example, the following CFGs describe expressions, terms, and factors.

expression=expression -term|term

term= term / factor| factor

factor =pow^factor|pow

factor=(expression)|id

Figure 3. A CFG for a subset of C statements

Let E represents expressions, T represents terms, P represents pow and F represents

factors that can be either parenthesized expressions or identifiers d, then we can rewrite the

CFGs of figure(3) as follow:

E = E - T | T

T = T / F| F

F = P^F|P

F = (E)| id

These productions cannot be used foretop-down parsing because of the following:

The production rules for E and T are left recursive.

The production rules F = P^F|P are left factoring.

Therefore, the following non-left-recursive variant and non-left-factoring for the same

grammar is to be used for top-down parsing:

E=TA

A=-TA

A=e

T=FB

B=/FB

B=e

F=PH

H=^F

H=e

P=(E)

P=d

Figure 4. A CFG for a subset of C statements

These CFGs are subset of c-statements will be passed to our LL(1) program where the

lowercase symbols are terminals.

4. LL(1) program for Parsing a subset of c-statements

In our paper, we design a parser LL(1) using top down parsing to build parse trees for

the input string of c-language, the parser scans the input string from left to right, one symbol

at a time. Top-down parsing can be viewed as an attempt to find a leftmost or rightmost

derivation for an input string. Equivalently, it can be viewed as an attempt to construct a parse

tree for the input string from the root and creating the nodes of the parse tree in preorder [5].

Egyptian Computer Science Journal (ISSN-1110-2586)

Volume 41– Issue 2, May 2017

-33-

The input string is accepted if and only if, at the moment when the blank symbolis read

and the top symbol on the stack is $ [6].

In order to determine whether or not a grammar is LL(1), we introduce several kinds of

grammar analyses, such as determining whether or not a nonterminal can derive the empty

string, and determine the set of symbols that can appear as the first symbol in a derivation

from a non terminal [7].

4.1 First and follow functions

First, The LL(1) program starts by isolating the LHS and the RHS of the given

productions in figure(4) and then finding the terminals and nonterminals as follow:

LHS RHS

E

A

A

T

B

B

F

H

H

P

P

TA

-TA

e

FB

/FB

e

PH

^F

e

(E)

d

Nonterminals terminals

E

A

T

B

F

H

P

-

e

/

^

(

)

d

Second, the program calculates the first and follow of each nonterminals:

Nonterminals First follow

E (, d $,)

A - , e $,)

T (, d - , $,)
B / , e - , $,)
F (, d / , - , $,)

H ^ , e / , - , $,)

 P (, d ^ , / , - , $,)

Egyptian Computer Science Journal (ISSN-1110-2586)

Volume 41– Issue 2, May 2017

-34-

4.2 Constructing the parsing table

Constructing of parsing table is an important activity in predictive parsing method [8].

Our LL(1) program uses the resulting first and follow values to construct the LL(1) parsing

table which will be used in parsing strings of c-statements.

NT - / ^ () d $

E Error Error Error TA Error TA Error

A -TA Error Error Error e Error e

T Error Error Error FB Error FB Error

B e /FB Error Error e Error e

F Error Error Error PH Error PH Error

H e e ^F Error e Error e

P Error Error Error (E) Error d Error

4.3 Parsing C-strings using the parsing table

 For example, the steps parsing the string (d-d)/d^d$ are given below.

Stack Input Action

$E (d-d)/d^d$

$AT (d-d)/d^d$ E->TA

$ABF (d-d)/d^d$ T->FB

$ABHP (d-d)/d^d$ F->PH

$ABH)E((d-d)/d^d$ P->(E)

$ABH)AT d-d)/d^d$ E->TA

$ABH)ABF d-d)/d^d$ T->FB

$ABH)ABHP d-d)/d^d$ F->PH

$ABH)ABHd -d)/d^d$ P->d

$ABH)AB -d)/d^d$ H->e

$ABH)A -d)/d^d$ B->e

$ABH)AT- -d)/d^d$ A->-TA

$ABH)ABF d)/d^d$ T->FB

$ABH)ABHP d)/d^d$ F->PH

$ABH)ABHd d)/d^d$ P->d

$ABH)AB)/d^d$ H->e

$ABH)A)/d^d$ B->e

$ABH))/d^d$ A->e

AB /d^d H->e

$ABF/ /d^d$ B->/FB

$ABHP d^d$ F->PH

$ABHd d^d$ P->d

$ABF^ ^d$ H->^F

Egyptian Computer Science Journal (ISSN-1110-2586)

Volume 41– Issue 2, May 2017

-35-

Therefore, the input string gets parsed.

It is also observed that the input string is scanned from left to right and while parsing

the input string. Also we must know that, only one input symbol is dealt with while taking the

parsing action. Hence, the name LL (1).We confirm that the left recursion and ambiguous

grammar are not allowed here.

Note that popping of similar symbols takes place when the stack and input symbols are

the same.

5. Conclusion and Future work

We note that from the examples dealt with that the compiler used compilers properly all

the input strings if they are to be accepted and rejected if not, using subset of the production

rules.

We can apply the same method used above to different CFG grammars and to

summarize grammars that uses subsets of the given grammars of some given language, which

enables us to use smaller subsets of an larger grammar containing very large productions

rules.

References

[1]. “Sentence Correction For English Language Using Grammar Rules And Syntax Parsing”,

Proceedings of 28th IRF International Conference, 7th June 2015, Pune, India, ISBN: 978-

93-85465-29-1.

[2]. PETER LINZ,“An Introduction toFORMAL LANGUAGES and AUTOMATA” Fifth

Edition. Publisher: Cathleen Sether 2012.

[3]. Torben Ægidius Mogensen “Basics of Compiler Design”, University of Copenhagen,

Published through lulu.com.2010.

[4]. Alfred V, Aho and Jeffrey D. Ulman, “Compilers Principles, Techniques, and Tools”,

Pearson Education,2007.

[5]. Tao Jiang, Ming Li, Bala Ravikumar, Kenneth W. Regan.“Formal Grammars and

Languages”.

[6]. Anil Maheshwari, MichielSmid ”Introduction to Theory of Computation”, Carleton

University, Canada, 2017.

[7]. Johan Jeuring Doaitse Swierstra, “Grammars and Parsing”’ 2001.

[8]. A.A. Puntambekar, “Compiler Design”, Technical Publication, 2008.

$ABHP d$ F->PH

$ABHd d$ P->d

$AB $ H->e

$A $ B->e

$ $ A->e

http://www.gettextbooks.com/author/A_A_Puntambekar

