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Abstract 

Exam scheduling, or exam timetabling, is one of the most important challenges of credit 

hour systems. Credit hours system are characterized by their large number of courses, 

students, and professors. However, there are many constraints regarding exam time tabling. 

The time tabling problem is a well known graph coloring problem. In this paper, we present a 

novel approach for solving the exam time tabling problem by enhancing the performance of 

the greedy algorithm using by modifying the chicken swarm optimization (CSO). In the 

proposed approach, the modified CSO is used to optimize the ordering of vertices fed into the 

greedy algorithm. Results show that, statistically wise, using the proposed approach, 

significant enhancements are obtained compared to using manual timetabling or even using 

the greedy algorithm individually. Moreover, the soft constraints are considered on the 

proposed approach using a proposed objective function. From time perspective, the execution 

time of the algorithm is approximately 1.5 minutes on the average, even in case of dense 

graphs. Furthermore, the cost function of the proposed approach is significantly less than that 

of using greedy algorithm only.   
 

Keywords: Exam Scheduling, Exam Time Tabling, Chicken Swarm Optimization, Greedy 

Algorithm. 
 

1. Introduction  

Credit hour systems are currently implemented in most universities and institutions. In 

Egypt, many Egyptian universities recently implement this system in the faculties. One 

important problem of the credit hour system is the problem of exam time tabling, or exam 

scheduling. The timetabling problem is always a difficult task which comes up every calendar 

year in educational institutions, especially if it has to be done manually [1]. Often, there is a 

large number of students and courses that have to be scheduled against existing limited 

resources [1]. In practice, universities will often have predefined number of timeslots in their 

timetable and their task will be to determine a feasible time table using fewer or equal 

timeslots [2]. The course and exam timetabling are relatively close problems, however, 

significant differences exist between them [3]. 

In Egypt, for example, lot of institutions perform the time table manually. The process 

of manual scheduling of exam time tabling consumes a lot of time and efforts due to the 

constraints involved in time table scheduling. In general, the importance of these constraints 

are not the same for all institutions [1], [2]. For example, in our faculty we are interested in 

designing a feasible time table having the minimum number of time slots. An advantage to the 

time table is that, the time table can consider students preferences. Studies show that, the 

exam time table may affect students performance. The authors in [4], made a survey of 
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student views finding that, over half of the students were unhappy with their examination 

timetables [4]. Furthermore, about 30% of respondents believed that, their examination 

timetable negatively affected their academic achievement [4]. The quality of the timetabling 

has a great impact on different stakeholders including lecturers, students and administrators [3]. 

When designing exam time tabling, there are many constraints that should be taken into 

consideration. One and perhaps the most important constraint is the avoidance of conflicts 

between exams. Another constraint is the limitation of the available exam slots. Another 

limitation is related to the availability of exam rooms and human resource. The previous 

constraints are called hard constraints that must be satisfied and cannot be violated [2]. 

Additionally, there are some soft constraints that are preferable to be satisfied such as students 

and institution preferences. For example, it is preferred to maximize the time interval between 

two consecutive exams for the majority of the students. Actually, the quality of an 

examination timetable is measured by the extent of the soft constraint satisfaction [4]. The 

problem of university exam timetabling could be modeled as a graph coloring problem [2]. 

The problem involves assigning a set of events (exams) to a fixed number of colors 

(timeslots). The conflicting events need to be assigned to different timeslots. In graph coloring 

problems, a course is considered as a vertex, with edges connecting two courses are the 

conflicts between them. Each color represents a timeslot. A feasible coloring corresponds to a 

complete timetable with no conflict violations [2]. 

A well known solution to the graph coloring problem is the greedy Algorithm. The 

greedy algorithm is one of the constructive algorithms that guarantees satisfying one 

important constraint of the hard constraint (the conflicts) [2]. One important problem of the 

greedy algorithm is; the greedy algorithm doesn’t consider the satisfaction of soft constraints. 

So, the exam time tabling problem is a typical optimization problem.  

In this paper, we propose a new approach for enhancing the performance of the greedy 

algorithm using a modified version of the chicken swarm optimization (CSO). In this new 

approach, we are satisfying the hard constraints using the greedy algorithm, and hence, 

avoiding the large searching domain. On the same time, the main problem of the greedy 

algorithm is solved. A new objective function is proposed to measure the quality of the 

generated exam time table. This paper is organized as follows; in section 2, we present the 

necessary background. In section 3, we present the related work. In section 4, the proposed 

algorithm is introduced. In section 5, the experimental results are introduced and discussed. 

The paper is concluded in section 6. 

2.  Background  

2.1 Exam Time Tabling As a Graph Coloring Problem 

Exam timetable is a difficult task in  most faculties. The staff involved in the scheduling 

process have a lot of difficulties due to the large number of students and courses that are 

required to be scheduled against limited recourses [1]. There are multiple constraints involved 

in timetable design. These constraints could be classified into hard constraints and soft 

constraints. The main hard constraint is that, no exams with common resources could be 

carried out simultaneously. The other hard constraints may be related to the limitation of time 

slots and exam rooms [3]. Hard constraints have more higher priority over soft constraints. 

Timetables are considered as "feasible" if all of the hard constraints are satisfied [2]. 

However, the soft constraints are desirable but are not absolutely critical. In practice, it is 
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usually impossible to find feasible solutions that satisfy all of the soft constraints. Soft 

constraints vary between various institutions in terms of both types and importance [3]. The 

quality of timetables is usually measured by soft constraints satisfaction [3].  

The graph coloring problem could model exam time tables. The vertices of the graph 

represent courses, while graph edges represent the conflicts [2]. Let           be a graph, 

consisting of a set of n vertices V and a set of m edges E. Given such a graph, the graph 

coloring problem tries to assign each vertex v ∈  V an integer c(v) ∈  {1,2, . . . , k} such that: 

c(v)   c(u) ∀ {v, u} ∈  E; and k is minimal [2].  

The adjacency matrix, of the graph, is a rectangular matrix A with dimension n x n for 

which Aij = 1 if and only if vertices vi and vj are adjacent, and Aij = 0 otherwise [2]. In exam 

timetabling problem, the adjacency matrix may be considered as the a binary version of the 

conflict matrix C. We define the conflict matrix C as the matrix containing all conflicts 

between courses. That is C is an n x n matrix such that Cij represents the total number of 

students registering both courses i and j. the conflict matrix is a very important term in the 

proposed objective function in satisfying both hard and soft constraints. The chromatic 

number of a graph G, denoted by χ(G), is the minimum number of colors required to get a 

feasible coloring of G [2], [3].  

 The density of graph G is the ratio between the number of edges to the number of 

vertices. Graphs having low densities are referred to as sparse graphs. Graphs having high 

densities are called dense graphs. The density of G could be calculated as:   

                           (1) 

The constructive algorithms, such as the Greedy algorithm, are the classical solutions to 

graph coloring problems. These algorithms ensure the satisfaction of hard constraints. In these 

algorithms, the exams are ordered by some heuristic. The exams are then assigned, one by 

one, into the timeslots [3]. These algorithms are simple and powerful. They could provide a 

reasonable solution within a small amount of time and they are easy to implement. They are 

often used to construct initial solutions to be further enhanced [3].  

The meta-heuristic optimization approaches, proposed to solve graph coloring 

problems, are classified into two categories: one or two stage algorithms. In the one stage 

algorithms, the satisfaction of both hard constraints and soft constraints is attempted 

simultaneously. Then, the violations of hard constraints are penalized more heavily than 

violations of soft constraints [2]. The two-stage algorithms, however, satisfy hard constraints 

first forming a feasible solution. Next, the soft constraints are optimally being satisfied by 

navigating the space of feasible solutions [2]. Our proposed approach is a two stage algorithm 

that use the greedy algorithm first to get a feasible solution. Next, a modified CSO is used to 

enhance this initial feasible solution. 

2.2 The Greedy Algorithm 

The greedy algorithm is one of the simplest, but most fundamental, heuristic algorithms 

for graph coloring. The algorithm takes vertices one by one according to some ordering and 

assigns each vertex its first available color. The greedy algorithm can produce an optimal 

solution for any graph given the correct sequence of vertices [2]. In time tabling problems, the 

greedy algorithm works as follows; the courses are fed into the greedy in some ordering 

(permutation) of the courses one by one in the first available time slot. If there is a conflict 
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between the current course and any other course in the current time slot, then, a new slot is 

generated, and the current course is added to this slot. Otherwise, the current course is added 

to the current time slot. The process is repeated until finishing all courses.  

It is interesting to note that, the courses ordering, fed to the greedy algorithm, is very 

important that affects the quality of the generated time table. For example, figure 1 shows two 

different ordering (permutations) of vertices [2]. In figure 1 (a), the permutation π = (v1, v2, v3, 

. . . ,v10) leads to five colors solution. However, a permutation of the form π = (v1, v3, . . . 

,v9,v2, v4, . . . ,v10) produces only two colors, on the same graph, shown in Figure 1(b). 
 

 

(a) five different colors    (b) Two different colors 
 

Figure 1. Different Order of Vertices in the Greedy Algorithm [2] 
 

In the proposed approach, we propose a modified CSO to select the optimal ordering of 

vertices (exams) that fed to the greedy algorithm. A complete description of the greedy 

algorithm is shown in algorithm1 listing [2]. In the algorithm   represents the permutation fed 

to the algorithm, S refers to the solution [2].  

                               
(1)            | |    

(2)                    | | 

(3)                    (   {  })                             

(4)                               {  } 

(5)                              

(6)                      

(7)                              

(8)               | |      

(9)                     {  } 

(10)                         

2.3 Chicken Swarm Optimization (CSO) 

Chicken swarm optimization is an optimization technique that mimics chickens swarm 

behaviors. It is proposed by Meng. et. al. [5]. CSO performance is compared with other 

optimization techniques on twelve benchmark problems. CSO outperforms these techniques 

in terms of accuracy and robustness. The chicken swarm is divided into several groups. Each 

group consists of a rooster, hens, and chicks. Different chickens follow different laws of 

motions. The identity of the chickens (roosters, hens and chicks) are depending on the groups. 
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The chickens with best several fitness values would be acted as roosters. The chickens with 

worst several fitness values would be designated as chicks. The others would be the hens. The 

hens randomly choose groups to live in. Chickens follow their group-mate rooster to search 

for food. They may prevent the ones from eating their own food [5]. The equations from 2 to 6 

describe the motion of the chickens [5].  

    
        

                                              (2) 

 

   {
                                   

     
     

|  |  
               

                            [   ]                                               (3) 

 

    
        

          (     
      

 )          (     
      

 )                             (4) 

 

                          ⁄                                  (5) 

 

                                                                   (6) 

 

    
        

          
      

                                        (7)                     

 

The N virtual chickens, illustrated by their positions     
    , such that i   [ 1, 2, …, N], j   

[ 1, 2, …, D] at time t. The       is a Gaussian random generator. f is the fitness value of the 

corresponding x [5]. Algorithm 2 listings describes the original CSO algorithm [5]. 

                                   [ ] 
1.                                                                         

2.                                              
3.                          

4.                 

5.                                                                                             
6.                                                                                                                  

7.            

8.                

9.                                                       ⁄                           

10.                                                         ⁄                           

11.                                                      ⁄                           

12.                                     
13.                                                                         
14.             

15.           

3. Related Work 

In [3], the authors present an excellent survey of the research on exam timetabling in the 

last decade. In [4], the authors present the results of a survey amongst students concerning 

their own preferences for particular properties of examination timetables. The survey shows 

that fairness is indeed a concern for them. In [2], the authors discuss the graph coloring 

problem and its constructive algorithms, the greedy, DSATUR, and RLF algorithms. 

Recently, several meta-heuristic methods are used to solve the time tabling problem. For 

example, in [1], the authors propose a genetic algorithm technique to develop a timetable. In 

[6], the authors present a meta-heuristic technique to solve the exam timetabling problem. 

They propose a non-linear formulation used to find an initial feasible solution. In [7], the 
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authors present a hybridization of the ants colony algorithm and local search heuristic. The 

hybridization is used to maximize the free time between consecutive exams for each student. 

In [8], a multi-objective optimization program was proposed to handle spreading of exams 

criteria and a Tabu Search was implemented to find a good feasible solution. In [9], the 

authors construct a starting feasible timetable using a simple graph coloring heuristic. 

Simulated Annealing is then used as an iterative heuristic for improving the spreading of the 

conflicting exams. In [10], the authors present the regulatory algorithm (RGA) which is a two 

dimensional extension of standard evolutionary algorithms. The algorithm is applied to exam 

timetabling in the University of Duisburg-Essen. The genetic Algorithm is used to analyze 

conflicts only of the time table. In [11], the authors treat the timetable problem as a single 

objective optimization problem. The space of both valid and invalid solutions is explored. 

Simulated annealing is then used to optimize this objective function.  

Regarding chicken swarm optimization (CSO), Meng et. al. [5], present the recent CSO 

that mimics chickens behaviors. The authors compare the performance of CSO with that of 

particle swarm (PSO), Differential evolution (DE) and bat algorithm (BA) on twelve 

benchmark problems. Their experiments show that CSO outperforms these algorithms in 

terms of optimization accuracy and robustness. In [12], the authors propose a CSO based 

algorithm for feature selection. The results outperform other optimization methods such as 

particle swarm optimization (PSO) and genetic algorithm. In [13], the authors use CSO to 

solve extremely challenging non-convex economic load dispatch problem. In [14], the authors 

use CSO to solve the clustering routing protocol of wireless sensor networks. Results show 

that, CSO is better than PSO in solving this problem. Some improvements on the original 

CSO have been proposed. For example, in [15], the authors proposed an improvement to CSO 

to overcome the local minimum problem. Again, CSO outperforms particle swarm 

optimization, bat algorithm, and original chicken swarm optimization. In [16], a modified 

CSO algorithm is proposed for global optimization. This modification reduces CSO  steps. In 

[17], the authors present an improved chicken swarm optimization algorithm based on elite 

opposition-based learning to avoid the possibility of local minimum.  

It is clear from the previous literature survey that, till now, CSO is not used in the graph 

coloring problems. Considering the novelty and superiority of CSO over the other 

optimization algorithms, we use CSO to enhance the performance of the greedy algorithm in 

graph coloring problems. 

4.  The Proposed Approach 

In this section, we will explain the proposed approach that efficiently solves the graph 

coloring problem focusing on one of the most important applications of graph coloring which 

is the automatic exam timetabling problem. As we explain before, the greedy algorithm could 

guarantee an optimal solution(s), to the graph coloring problem if a proper order of the 

vertices is given. The main advantage of using the greedy algorithm is the guaranteeing of 

satisfying the main hard constraint of the timetabling problem regarding exams conflicts. 

However, improper ordering (permutation) of vertices leads to bad solutions from the 

perspective of soft constraints. The random ordering (permutation) of vertices is a possible 

solution to the greedy problem. This process may be conducted several times to choose the 

most optimal solution. However, there is no guarantee of reaching the global optimal solution 

in this case. In fact, our results prove this concept as we will show in the experimental results 

section.  

https://en.wikipedia.org/wiki/Differential_evolution
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To overcome this problem, in the proposed approach, we represent a more better 

solution for guarantying reaching the global minimum (the optimal solution) by using CSO to 

find an optimal ordering of vertices that is fed to the greedy algorithm. Additionally, the usage 

of CSO guaranteeing also satisfying the second hard constraint regarding the minimum 

number of time slots generated. Another advantage of using CSO is the ability of satisfying 

one of the important soft constraint ( the students preferences). 

Unfortunately, the original implementation of CSO generates a vector of real numbers 

rather than integers [5]. So, we propose a modification to the original CSO. Consider Si is a 

solution vector of size n, generated from the original CSO. That is Si = [s1, …, sn]. Such that, 

Si is a real number. We need a mapping function MAP to convert S to a new modified integer 

vector SM of the same size such that, SM (i)   SM (j) ∀ {i, j}, i, j ϵ {1, …,n}.  

SM (i)   n ∀  i. In fact, There are infinite number of mapping functions that satisfy the 

previous requirements. However, we propose a simple mapping function that described in 

algorithm 3 listings. 

                     

                                  
                                    

1.     
2.                        
3.                   
4.                                    
5.                   
6.                                   
7.        
8.           

 

The proposed mapping algorithm searches for the minimum element of S and gives it 

index i;      . Then this element is converted to a very large number to avoid choosing it 

again. The process is repeated until all values in S are mapped to integers. This simple 

mapping function guarantees generating a semi random permutation from 0 to n-1 (the 

number of courses) without repeating. This cost of this permutation is measured by the 

objective function. In the next CSO iteration, a new permutation is used to reach the optimal 

solution. A numerical example of the map function is shown in the table below. 

Old vector (real values)  New vector (integer values) 

3.2 0 0 1.2 8  4 1 2 3 5 

   

To measure the cost of a solution, we propose a new objective function. The proposed 

objective function is a minimization function aims to consider three constraints; the first is the 

hard constraint regarding scheduling of conflicted courses. The second semi-hard constraint is 

the number of time slots generated by the time table. The final constraint is the students 

preferences regarding maximization of the interval between consecutive exams with respect to 

all students. This proposed objective (cost) function, of a solution sol, is given by equation 8.  

Minimize                |   |         (       )                                  (8) 
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The first term of equation 8 represents the length of the time table in slots |   |. This 

term is weighted by a weighting factor f1. The second term of the equation have two sub terms 

weighted by factors f2, f3. The first sub-term  (      )  measures the distance between any two 

slots in the time table si, sj. the second sub-term is the absolute difference in slots between the 

measured slots. The second term is repeated for all time slots generated in the time table, and 

the total summation is computed.   

To measure the cost of a time table, let the generated time table, sol, has n slots that is 

sol={s1, …, sn}. Each slot si may contains q scheduled courses, that is s(i) ={c1, …cq}. We 

define the distance D between two time slots si, sj as:         (     )  such that cx is a 

course ϵ to slot si, and cy belongs to slot sj ∀  ci, ck. Here, Con is the conflict matrix which 

contains the number of student registering the two courses cx and cy.  

The objective of computing the distance between time slots is to find the total number 

of students common on two slots. If these two slots are near to each other, then they are 

penalized, and the cost function is increased. However, if these two slots are far away, from 

time perspective, then, the cost is decreased. This is controlled by the second sub-term 

        . In general, these distances are largely depending on the number of courses and the 

conflict matrix. So, weighting factors are required to balance the cost function. The main 

advantage of this objective function, compared to other methods, is the flexibility in adding, 

or removing, constraints according to university requirements without affecting the main hard 

constraint (the conflicts between time slots). The proposed approach is shown in Figure 2, and 

the algorithm is shown in algorithm 4 listings.  

                     

Figure 2. The Flowchart of the Proposed Approach 

Generate new permutation from CSO 

Construct a time table using Greedy  

Evaluate time table cost 

Store min cost, and its time table 

Display optimal time table and its cost 

Iterations 

finished 

Initialize the Modified CSO 

No 

Yes  
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1.                               
2.    
3.                                                              
4.                          
5.                     
6.                      
7.                                              
8.        
9.                                                    
10.                                     

 

 

5.  Experimental Results and Discussion 

In this section, we will present the experimental results of the proposed approach. We 

use MS Excel 2007, and Matlab R2012a for testing. The data set used consists of 12 different 

exam time tables. The dataset include two different academic programs in Faculty of 

computers and information, Helwan University; the general program (Gen), and the software 

engineering program (SWE). Table 1 describes the part of the dataset regarding the general 

program. Table 2 shows the second part of the dataset regarding the SWE program. For each 

program of the two programs, three consecutive academic years are considered. Each 

academic year include two consecutive semesters; the fall semester and the spring semester. 

The first column, of the two tables, show the semesters included in the experiments. The 

second column shows the number of courses taught in the semester. The third column shows 

the graph density, computed by using equation 1. The average number of courses, and the 

average of the graph density, are also shown in the table. Moreover, the correlation between 

the number of courses and the densities are also shown.  

The data set, of the two programs, are initially separated into two tables to test the 

variation between them. It is noted that from table 1, the average number of courses is 43 

course, while the average graph density is 0.72. Meaning that, the graphs are too dense 

although of the small number of courses. It is also noted that, the correlation between the 

number of courses and the graph density is a strong negative correlation. That means, as the 

number of courses decreased, the links, and the conflicts, between these courses are increased.  

Table 1. Datasets Description for General Program 

Semester 
Number of 

courses 

Graph 

Density 

Gen Fall 14 44 0.70 

Gen Spring 15 48 0.70 

Gen Fall 15 43 0.75 

Gen Spring 16 48 0.67 

Gen Fall 16 40 0.80 

Gen Spring 17 39 0.75 

Avg. 43.66 0.72 

Corr. -0.8467 
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Table 2 shows the same information of table 1, but now for SWE program. Here, the 

average number of courses is 33.5. That is, the average number of courses is less than the 

average number of courses in the general program. The average graph density is 0.53, which 

is also less than that of the general program. Again, the correlation in Table 2 is a strong 

negative correlation, meaning that, as the number of courses increased, the graph density 

decreased strongly.             

Table 2. Datasets Description for SWE Program 

Semester 
Number of 

courses 

Graph 

Density 

SWE Fall 14 32 0.58 

SWE Spring 15 33 0.55 

SWE Fall 15 34 0.52 

SWE Spring 16 44 0.40 

SWE Fall 16 31 0.64 

SWE Spring 17 27 0.54 

Avg. 33.5 0.53 

Corr. -0.79 
 

Table 3 shows the values of the various parameters used in the experiments. The first 

column of the table shows the number of population, the number of chickens, used in the 

chicken swarm optimization (CSO) that represents the number of roosters, hens, and chicks. 

The second column shows the number of iterations used.F1, F2, F3 are the three scaling 

factors used in the proposed objective function. The population number and the number of 

iterations are randomly chosen, whereas the objective function parameters are chosen by trial 

and error. it should be noted that, the parameters of the objective function are highly 

depending on the dataset itself and the values of the conflict matrix C. Changing these values 

highly affects the amount of soft constraints satisfaction, and also the number of slots 

produced.        

Table 3. Parameters for Soft Constraints and Pop Parameters 

POP. ITERATIONS F1 F2 F3 

50 50 20 0.01 10 

 

Table 4 shows the difference in performance between various methods that used in time 

table scheduling. In this table, we compare the quality of time tables produced by the 

proposed approach, manual, and greedy algorithm alone, in scheduling time tables. The first 

column shows the semester used. The second column counts the number of already produced 

time slots obtained from the manual time table scheduling. The third column shows the time 

slots obtained, from the proposed approach, considering the hard constraints only. The fourth 

column of the table shows the results of the proposed approach considering both hard and soft 

constraints. The last column of the table shows the performance measured from using the 

greedy algorithm individually by testing the greedy algorithm performance using 100 trials 

with different permutation. In this case, the result of the best one solution, produced by the 

greedy algorithm, are chosen.  
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Analysis of the table shows that, the manual scheduling, of the time tabling, is the worst 

technique used as the number of scheduled time slots is always greater than, or equal to, the 

number of slots of the other techniques. This is clear from the average number of time slots 

which equals 20.75, which exceeds all other tested techniques. On the other hand, the best 

average number of slots is obtained from using the proposed approach considering hard 

constraints only. The average number of slots in this case is 17.66. So, the proposed approach 

outperforms the other tested techniques regarding the number of generated time slots. 

Additionally, the proposed approach outperforms 100 trials of permutations fed to the greedy 

algorithm. As expected, adding more constraints (the soft constraints) will maximize the 

objective function value, causing more increase on the average number of generated time 

slots. This is shown in the fourth column. Here, the average number of generated time slots is 

18.33, which is also better than the manual scheduling of the table. However, it is slightly 

larger than using greedy algorithm only, taking into consideration that, the greedy algorithm 

doesn’t consider the soft constraints, as shown in Table 5. It is also clear that, the number of 

time slots could be decreased, in the case of soft constraints, by changing the objective 

function parameters giving more importance to the number of  time slots.   

Table 4. Number of Slots Obtained from Various Techniques 

Semester Manual 
CSO 

(Hard) 

CSO (Hard 

and Soft) 

greedy 

(100) 

Gen Fall 14 23 21 23 22 

Gen Spring 15 21 21 21 21 

Gen Fall 15 27 27 28 27 

Gen Spring 16 23 22 24 23 

Gen Fall 16 28 22 22 22 

Gen Spring 17 26 20 22 20 

SWE Fall 14 17 14 14 14 

SWE Spring 15 17 14 14 15 

SWE Fall 15 15 13 13 13 

SWE Spring 16 16 14 15 15 

SWE Fall 16 24 13 13 14 

SWE Spring 17 12 11 11 12 

Avg. 20.75 17.66 18.33 18.16 
 

The results of table 4 are statistically analyzed using three statistical tests [18]. All tests 

are based on the following two hypotheses: 

H0:μ1 =μ2 ,  Ha: μ1 ≠ μ2 

The null hypotheses H0 states that, there is no statistical differences between the two 

population means. The alternative hypothesis, Ha, states that, the population means are 

different. The first statistical test, we conducted, is a one tail paired t-test, with confidence 

95% [18], between the manual scheduling of the time table and the proposed approach using 

hard constraints only. This test shows that, tstat equals 3.3, tcritical equals 1.7. Here, tstat is 

greater than tCritical. So, the decision is to reject the null hypothesis [18]. That is, the time table, 

scheduled using the proposed approach, is better than the manual scheduling of the time table 

taking into consideration the number of generated time slots.  

The second conducted test is also the paired t-test between the hard constraints and the 

soft constraints of the algorithm. The test shows that, tstat equals -2.6 and tcritical equals 1.7. So, 
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tstat is less than tCritical. So, the decision is to accept the null hypothesis. This means, there is no 

statistical differences between the time tables generated, using the proposed approach, either 

when considering hard constraints or soft constraints, regarding the number of generated time 

slots. In this case, we benefit from satisfying the soft constraints without a significant increase 

in the generated time slots.  

The third conducted experiment is the nonparametric Wilcoxon signed rank test [18]. 

This test is used to measure the statistical difference between the output of the proposed 

approach, and the output of the greedy algorithm using 100 random iterations. A first look at 

the results obtained from Table 4 shows that, six semesters are enhanced, using the proposed 

approach, over using the greedy algorithm. The output of the other six semesters are the same 

using the two algorithms. This result is supported by using the Wilcoxon signed rank test. In 

the test, wcomputed equals 0 and wcritical equals 2. So, the decision is to reject the null hypothesis. 

That is, the wcomputed of the signed rank test Wilcoxon is less than wcritical. This means, using 

the proposed approach is better than using 100 trials of the greedy algorithm. Furthermore, a 

graphical plotting of Table 4 is shown in Figure 3. It is very clear from the figure that, the 

manual scheduling of the time table is the worst option regarding the number of generated 

time slots. The figure also shows that, the greedy algorithm is better than the manual 

scheduling. Finally, the proposed approach outperforms the two other techniques.  

 

 
 

Figure 3. Comparison of Generated Time Slots  

 

Table 5 shows the total cost, of the objective function, measured between the proposed 

approach considering the soft constraints and the minimum cost of using greedy algorithm 

individually. Here, the cost of the greedy algorithm is the minimum cost obtained in the 100 

tested trials. From the table it is clear that, the average cost function of the proposed algorithm 

is 65.27 whereas the average cost function of the greedy algorithm is 89.83. Meaning that, a 

large reduction of the cost function is obtained using the proposed approach. Additionally, in 

all cases, the cost function of the proposed algorithm is lower than that of the greedy 

algorithm. The cost function is measured by using the objective function shown in equation 8. 
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An important conclusion from the table is that, in all cases, the satisfaction of the proposed 

algorithm to the soft constraints is more better than using the greedy algorithm individually. 

Table 5. Total Cost of the Objective Function 

Semester CSO ( soft const.) 
greedy Min cost 

(100 trial) 

Gen Fall 14 91.61 148 

Gen Spring 15 84.63 117 

Gen Fall 15 139.33 162 

Gen Spring 16 103.95 151 

Gen Fall 16 103.48 140 

Gen Spring 17 92.31 167 

SWE Fall 14 29.25 32 

SWE Spring 15 29.37 35 

SWE Fall 15 25.75 29 

SWE Spring 16 29.64 34 

SWE Fall 16 27.87 33 

SWE Spring 17 26.11 30 

Avg. 65.27 89.83 
 

Furthermore, a graphical plotting of Table 5 is shown in Figure 4. Again, the proposed 

approach outperforms the 100 trials of the greedy algorithm. Here, we consider both soft and 

hard constraints. It is clear from the figure that, in all cases the proposed approach 

outperforms the 100 trials of the greedy algorithm.  

 

 

Figure 4. Cost Comparison 

Moreover, the time analysis of the proposed algorithm is interesting. The average 

execution time of the proposed algorithm is a approximately 100 seconds. In fact, this is 

depending on the number of courses and graph density. The average execution time of the 

greedy algorithm for 100 trials is 3 seconds. However, the average scheduling of manual time 

tabling is hours or perhaps days or weeks. Although, the proposed approach is not the best in 

execution time, some important benefits are obtained from the proposed approach in terms of 

soft constraints satisfaction, in which, the greedy algorithm cannot satisfy as shown in Table 

5. Moreover, 100 seconds are not significantly large compared to the advantages gained by 
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generating optimal time table, taking into consideration that, time table generation is 

performed only once at each semester. Comparing to [10], the authors state that their 

proposed algorithm takes several minutes in execution. Considering this, our proposed 

approach outperform their algorithm.    

6.  Discussion 

An important challenge of credit hours systems is the exam scheduling, or exam 

timetabling. The process of manual scheduling of exam time tabling consumes a lot of time 

and efforts due to the constraints involved in time table scheduling. The problem is a typical 

graph coloring problem. In our faculty, we are interested in designing feasible time table 

having the minimum number of time slots without conflicts. Currently, the time table is 

prepared manually. The greedy algorithm could solve the problem of avoiding exams 

conflicts, and the running of the algorithm is O(n
2
). However, the ordering of the vertices 

(courses) highly affects the number of generated colors (time slots). Also, the greedy 

algorithm doesn’t consider the soft constraints. So, we propose a new approach for enhancing 

the performance of the greedy algorithm using the recent chicken swarm optimization (CSO). 

In this new approach, we are satisfying the hard constraints first using the greedy algorithm 

avoiding courses conflicts, and hence avoiding searching in a large search domain that the 

optimization algorithms often face. Using CSO proves superior performance compared to 

other meta heuristic algorithms.  

We propose a new objective function to measure the quality of the generated exam time 

table. The proposed approach is a two stage algorithm that use the greedy algorithm first to 

reach a feasible solution, and then use a modified CSO to enhance this initial feasible 

solution. In the first stage, the avoidance of conflicts is guaranteed by using the greedy 

algorithm. Next, the proposed objective function explores the domain of valid solutions. The 

objective function, is a minimization function, mainly considers three terms; the time table 

length in slots, the differences between slots, and the number of students who are common in 

different courses. The main advantage of this objective function, compared to other methods, 

is the flexibility of adding, or removing, constraints according to university requirements 

without affecting the main hard constraint (the conflict between slots). The weights of the 

objective function can guarantee the priority of one constraint over another. The proposed 

approach is more better than those of one stage meta-heuristic. The proposed approach 

dramatically decreases the search space, and then a small search space is optimized using 

CSO. Actually, we test the one stage approach using genetic algorithm, and we cannot find a 

feasible solution in a reasonable amount of time.       

 In our experiments, the data set used consists of 12 exam timetables representing the 

dataset of two academic programs in faculty of computers and information; the general 

program (GEN), and the software engineering program (SWE). The two programs have 

different number of courses. The data set used is for three consecutive years including two 

semesters. Three performance of three techniques are compared; the proposed approach, the 

greedy algorithm with 100 random permutation of the input, and the manual time table (which 

is used till now in time table scheduling). The performance measured is the number of time 

slots obtained by each timetabling technique. Results show that, the manual scheduling is the 

worst one as the number of slots is always greater than or equal to the generated number of 

slots using the other two techniques. On the other hand, the best average number of slots is 
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obtained from using the proposed approach. The greedy algorithm has a moderate 

performance between manual scheduling and the proposed approach. Moreover, the proposed 

approach considers the soft constraints by using the proposed objective function. The 

proposed approach could control the balance between the number of time slots and soft 

constraints satisfaction. The statistical tests performed shows a significant improvements 

occurred by using the proposed approach over both manual scheduling and even 100 trial of 

the greedy algorithm.                 

While the objective function parameters are chosen by trial and error in our 

experiments, they could be easily adjusted and tuned to suit other data sets. Moreover, 

changing the objective function parameters reflects the importance of certain soft constraints. 

The combination of the objective function could consider other constraints such as rooms 

capacity and many other constraints.  

Obviously, the proposed approach produces the optimal time table regarding the number 

of time slots. However, this may causes more courses to be scheduled on one time slot. 

Sometimes, this is not desirable as there are some other constraints such as rooms capacity 

and staff occupancy. It is possible to manually dividing the time slots having more students 

into one or more slots at the cost of increasing the number of time slots produced. The 

produced time table may be further enhanced by swapping generated time slots considering 

the overall institution preferences. In fact, our experiments show that, there are lot of optimal 

solutions obtained having the same cost function considering the hard constraints. The 

institution is free to use any of them based on their preferences. 

The cost of the proposed approach is less than the cost of the greedy algorithm (100 

trials). From the execution time point of view, the average execution time of the proposed 

approach is a approximately 100 seconds depending on the number of courses and graph 

density. Comparing to the current manual scheduling of the table, manual scheduling is 

spending days or even weeks to finalize the time table scheduling. Moreover, as the results 

says, the produced time slots, of the manual scheduling, are the largest among the other 

compared methods. Moreover, there is no guarantee of satisfying the soft constraints by 

manual scheduling or even the greedy algorithm. Compared to other methods [10], the authors 

state that, their proposed algorithm takes several minutes in execution. So, our proposed 

approach outperform their algorithm.    

7.  Conclusions  

An important challenge of credit hours systems is the exam scheduling, or exam 

timetabling. There are many constraints regarding exam table scheduling such as conflicts of 

exams, availability of time slots, and students preferences. The problem of exam timetabling 

is a well known graph coloring problem that could be solved using the greedy algorithm. 

However, there are some drawbacks of the greedy algorithm regarding the quality of the 

resulted solution. In this paper, we present a novel approach for solving exam time tabling 

problem by enhancing the performance of the greedy algorithm using modified chicken 

swarm optimization (CSO). In the proposed approach, CSO is used to choose the optimal 

order of vertices (courses) to produce the minimum number of colors (time slot). Results 

show that, the proposed approach significantly enhances the efficiency of the time tabling 

solution compared to using manual timetabling or even using 100 random iterations of the 

greedy algorithm when being used individually. Moreover, the proposed algorithm considers 
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the soft constraints of students preferences in which other algorithms do not. The importance 

of each soft constraint could be determined using a proposed weighted objective function. 

From time point of view, the execution time of the algorithm is approximately 1.5 minutes on 

the average, even in case of higher graph densities. Furthermore, the cost function of the 

proposed algorithm is significantly less than that of multiple iterations of the greedy 

algorithm.     
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