
Egyptian Computer Science Journal Vol. 42 No.1 January 2018                    ISSN-1110-2586 

 

 

 

 

-43- 

A Novel Web Application for Modeling 3D Fractals 

Marija Shuminoska
1
, Elena Hadzieva

2
, Emilija Celakoska

3 

1 
University of Information Science and Technology “St. Paul the Apostle”, Faculty of Computer 

Science and Engineering – Ohrid, Macedonia 
2 
University of Information Science and Technology “St. Paul the Apostle”, Faculty of Information 

Systems, Visualization, Multimedia and Animation, Department of Applied Mathematics – Ohrid, 

Macedonia 
3
Ss Cyril and Methodius University, Faculty of Mechanical Engineering, Department of Mathematics 

and Informatics – Skopje, Macedonia 

marija.shuminoska@cse.uist.edu.mk, elena.hadzieva@uist.edu.mk, emilija.celakoska@mf.edu.mk  

 

 

Abstract 

This paper introduces a novel application for generating and interactively modeling 

three-dimensional fractals defined by iterated function system (IFS). The modeling is 

achieved by means of control points, just like Bezier curves and surfaces are controlled. 

Unlikely the common way for transforming 3D fractals used in some existing software 

applications, by setting parameters of the required affine transformations and regenerating 

fractals, in this application the modeling is free and visually intuitive. There are two ways of 

defining control points (which are vertices of a 3-simplex): the first one is by manually 

defining the vertices of the simplex and the second, by finding a kind of minimal 3-simplex 

that contains the fractal. By allocating barycentric coordinates to each fractal point with 

respect to the vertices, every repositioning of the vertices leads to a fractal modification 

visible in real-time. Furthermore, the application offers other interesting features, such as 

editing the fractal by changing the IFS coefficients, saving files in a specific image format, 

rotation animation and continuous transformation of the fractal by continuous change of the 

parameters of some basic affine transformation. The application is written in JavaScript and 

uses the Three.js library.  
 

Keywords: 3D Fractal, Iterated Function System, Barycentric Coordinates, Simplex, 

Modeling, Web Application. 
 
 

1. Introduction 

During the last few years, many engineers inspired by the benefits and beauty of 

fractals, developed software tools for generation of this specific family of shapes. The 

solution presented in this paper offers a novel web-based application for generation of three-

dimensional fractals defined by an iterated function system (IFS) and for their interactive 

modeling. The IFS approach relies on a relatively basic theory and the implementation on a 

computer program is straightforward ([2, 14]). Furthermore, the modeling is performed by 

dragging and dropping four non-planar points, one at a time; any repositioning of a vertex 

defines a unique affine transformation that determines the transformation of the fractal. This 

novel feature, provides great controllability over the fractal image on a very convenient way – 

the transformations are visible in real time. There are two possibilities for controlling the 
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fractal with the vertices of a simplex. The fractal might be controlled either by the so called 

standard-like minimal simplex (will be defined later) or by a manually added simplex defined 

by the user in an interactive manner. Besides these main characteristics, the presented 

application offers other noteworthy features, which will be discussed in more details in 

section 2.2. 

This work is continuation of the work presented in [11-13] where the authors elaborate 

software application for modeling 2D IFS fractals. Throughout the literature, a lot of things 

are said about generating 2D fractals (like [2], [14], [17] and many more) and not so many 

about their transformation ([3], [7], [8], [9], [11-13]). Concerning the 3D fractals, there are 

very few things about their generation and almost nothing about their transformation. In [16] 

the authors propose an evolutionary system for automatic creation of 3D artistic fractals. The 

fractal shapes generated by a combination of an IFS and genetic algorithm, can be 

interactively modified by adjusting a set of parameters. In [4] a way of mathematical 

generation of volume data that represents fractals, including ones generated by IFS, is 

illustrated. For their representation and interactive exploration, the author uses already 

existing rendering software. The disadvantage is that during the visualization, the zooming 

requires a new calculation of the fractal volume. An approach for using kaleidoscopic IFS 

fractals in generating 3D complex buildings is presented in [15]. It provides an option for 

interactive modeling by selecting parameters that define the building. The results of the 

changes are instantly available. The authors in [18] introduce a means for generating 3D 

connected fractal solid. The fractal is then exported in a specific data structure such that the 

object can be modeled in a CAD platform. The data structure contains necessary information 

so that a physical object can be built and production of the fractal can be realized. 

In the following lines we give some basic definitions of notions used in this paper.  

Definition 1 ([5]). Let   (        )   (        )   (        )       
(        ) be four non-planar points in    . Then a point (     ) in the space has the 

barycentric coordinates (       ) with respect to      if 
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Another way of expressing the formula (1) in terms of matrices is the following form 
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Since the vertices   (        )   (        )   (        )       (        ) 
are non-planar, the determinant of M is non-zero. Consequently, the matrix M is non-singular 

and the equation (2) can be reformulated as 
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The relations (2) and (3) represent conversions from barycentric coordinates relative to 

the affine base {A, B, C, D} to rectangular coordinates and vice versa. 
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Definition 2 ([5]).  Every four non-planar points from        together with their 

convex hull are called a 3-simplex (3D simplex). 

Note that the vertices of a 3-simplex in    are affine basis for this space. Here we will 

work only with 3-simpleces in     

Definition 3.  The 3-simplex in    defined by the points (1,0,0), (0,1,0), (0,0,1) and 

(0,0,0) is called a standard simplex. The 3-simplex in    whose sides are parallel with the 

standard simplex will be called a standard-like simplex. 

Definition 4. Given set 3.S  R  The standard-like simplex with minimal volume that 

contains the set S will be called a minimal standard-like simplex for S. 

Transformations are essential part of computer graphics and they are generally used to 

manipulate models of objects by changing their position, shape or orientation. The most used 

transformations in computer graphics are affine transformations. The transformation of the 

form 

 ( )                                                                                       ( ) 
 

where   is a     matrix and b is an n-dimensional vector, is called an n-dimensional 

affine transformation ([19]).  

An important theorem related with the affine transformations should be mentioned in 

this section which is called the Fundamental Theorem of Affine Transformations.  

Theorem 1. ([6]) Given two ordered sets of four non-planar points from    each, there 

exists a unique affine transformation f mapping one set onto the other. 

To achieve our goal for interactive affine transformations of fractals, we use the random 

iteration algorithm (RIA) for fractal generation, which actually means that the fractal is a set 

of points ([2]). Relating this set to an affine basis of     with barycentric coordinates relative 

to that basis, will empower this set with the affine invariance property ([10, p.145-146]).  
 

2.  Review of the Available 3D Fractal Applications 

The admiration of the fractal geometry of nature and the beauty of fractals themselves 

have inspired many engineers to develop software tools for generating, examining or 

analyzing fractals. The most popular applications, in the period when fractals started to take 

advantage of computers, were Fractal Studio, Astro Fractal, Fractint, FracZoom and 3DFract. 

However, these programs have not been upgraded in the last few years and therefore will not 

be taken into consideration in the review. All the selected applications in this section, 

incorporate the IFS approach as a method for generation of the fractals. 

2.1.  Mandelbulber ([20]) 

Mandelbulber is an experimental tool that offers options for translation and rotation of 

the fractal image. However, the changes are not visible in real time. Every time a particular 

parameter is modified or a transformation is applied, the user must click on the “render” 

button, after which the modified fractal is regenerated. Having the feature of combining 

fractals into infinite hybrid variations, makes this software different than the others. 

Mandelbulber is available for Windows, Linux and Mac operating systems. 
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2.2.  IFS Builder 3D ([21]) 

With this software tool, transformations of the rendered fractal are possible by editing a 

text file written in a special interpretive language. The fractal can be modified by applying 

one of the basic transformations (translation, scaling, rotation and reflection), or few of them 

consecutively, to all points simultaneously. Once the text file is edited, the user needs to 

rebuild the program to make the changes visible on the image window. The transformation of 

the fractal is again non interactive and only the final transformation is shown on the screen. 

The software tool is available for Windows and Linux users. 

2.3.  Fractal Lab ([22]) 

Besides the generation of IFS fractals, the Fractal Lab offers their real-time 

transformation limited to rotation and few not well defined and unpredictable transformations. 

The last transformations yield to interesting fractal objects that might be used for exploration 

or in game and movie industry.  Fractal Lab is a web based application and does not depend 

on a specific operating system, which is its advantage.  

2.4.  ChaosPro ([23]) 

ChaosPro contains several pre-made IFS fractals and fractals generated on many other 

ways (Escape Time, Quaternion, Layer Fractal, LSystem,…), but it also has an integrated 

formula editor so that the user can create their own fractal forms. Although the developer 

describes the software tool as offering a real-time transformation of fractals, that is the case 

only for rotation and translation. Other transformations for the IFS fractals are not really 

offered. The ChaosPro runs only on Windows operating system and comes with options with 

detailed theory explanation and documentation. 

2.5.  XenoDream ([24]) 

This software is worth mentioning since it offers a lot convenient possibilities for 

exploring and generating new fractals. However, it does not offer possibilities for 

transforming fractals which is the primary interest in this paper.  

3.  The application Fractal Transformer 

3.1. User Interface Description 

Fractal Transformer ([25]) is an interactive fractal generation and modeling web 

application, developed with the use of recent browser technologies. It is written in the 

JavaScript programming language and uses the Three.js library to take advantage of the 

WebGL API.  The WebStorm integrated development environment (IDE) is used for its 

development.  

The graphical user interface (GUI) is user-friendly and offers two menus with well-

organized layouts contained within one page. Although simple, the GUI provides various 

options and features that can be selected or set up. The first fractal, which is rendered after the 

page content has finished loading, is the so called Barnsley Fern (Fig. 1). This is one of the 

most astonishing examples of IFS fractals, since it closely resembles nature but also lies in the 

same mathematical category of constructions as the Sierpinski gasket, the Koch curve and the 

Cantor set.  
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Figure 1. The web application 

 

The Barnsley fern is an attractor of the following IFS: *               +, where the 

mappings                         all of them equally probable to be applied, are 

defined by 
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Besides the Barnsley Fern, this application offers several other fractal templates 

generated with the same random iterative process (Fig. 2, Fig. 3). 

 

Figure 2.  Dodecahedron Flake, Hexahedron and Elm Tree fractals 
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The whole scene, including the generated fractal are not fixed in the 3D space. Instead, 

the user can control the camera by rotating, zooming and panning it around the center of the 

scene (0,0,0). The camera actually behaves as a satellite in orbit around the center, allowing 

the user to move around with the aid of the mouse and keyboard in real time. This is a very 

useful feature of the application, especially because it allows observing the fractal from 

different perspectives as in a real 3D space. 

The presented application has also a potential of transforming the fractal in several 

ways. The reviewed software tools and other available tools in this area, are capable of 

modifying the fractal by changing the value of some settings. Fractal Transformer goes 

further and offers a new approach for transformation by means of a control 3D simplex.   

Figure 3. List of fractals from the top left menu 

 

One of the controlling tetrahedrons available in the application is the standard-like 

minimal simplex of the fractal. Every time a new fractal is selected from the list, its minimal 

standard-like simplex is immediately calculated. The user can toggle the visibility of this 

tetrahedron with the „Show Minimal Simplex‟ checkbox from the top-right menu. In order to 

keep the scene as clear as possible, the standard-like minimal simplex is hidden by default. 

The user can control the movement of the tetrahedron that defines a unique affine 

transformation (Theorem 1). Above being visually intuitive, the transformation of the fractal 

caused by the transformation of the simplex is precisely determined. The unique affine 

transformation defined by changing the position of a vertex of the control simplex (Theorem 

1), is exactly the one that transforms the fractal as well. This is possible and mathematically 

justified by the affine invariance property of the barycentric coordinates ([10]). This is 

achieved by moving one of its four vertices using the mouse across the scene and placing 

them in a desirable location. When the mouse cursor is positioned over a vertex, its symbol is 

changed from default (an arrow) to a pointer (a hand with an outstretched index finger). 

Pressing and holding the left mouse button when the style is shown as a pointer, will enable 

movement of the particular vertex. During the repositioning of the mouse, its cursor is 

changed and remains as a „move‟ symbol (two double-sided crossed arrows) until the left 

button is released. We would like to point out that the fractal image simultaneously and 

continuously follows every relocation of the vertices A, B, C or D.  Since the fractal stays 



Egyptian Computer Science Journal Vol. 42 No.1 January 2018                    ISSN-1110-2586 

 

 

 

 

-49- 

within the convex hull of the standard-like minimal simplex during each transformation, it can 

be controlled better compared to the manually added simplex (this simplex will be presented 

later in this section). Several transformations of the Barnsley fern fractal with the use of its 

standard-like minimal simplex are given in the Fig. 4. 

Figure 4. Transforming the Barnsley Fern by means of a standard-like minimal simplex. a. The minimal 

tetrahedron after selecting the fractal and checkbox ‘Minimal Simplex’ is constructed. When the simplex 

is transformed by moving its vertices (b. vertex D, c. vertex C, d. vertices D and A), the fractal follows the 

transformation. 

There are situations when the user requires greater autonomy when it comes to 

determining the position of the tetrahedron‟s vertices. For that purpose, Fractal Transformer 

also gives an option to place the points of the simplex anywhere on the scene. Plotting three-

dimensional points is as follows. First, the user needs to press and hold the Control key. As a 

result of this action, a blue semi-transparent plane that has its center at the origin of the 3D 

space (0, 0, 0) will be rendered on the scene. As the user rotates the scene, the plane changes 

its orientation such that it always faces the camera. Now, while the plane is visible the four 

vertices of the manually added tetrahedron can be added by left mouse click, one vertex at a 

time. Once the position of the fourth vertex is defined, the vertices will instantaneously be 

connected with edges. At the same time, a section with settings which are dedicated to the 

manually added simplex will appear in the right menu (Fig. 5).  

 

Figure 5. Menu section for the Manual Simplex 

a b c d 
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At this point, the manually added simplex is created but it is not related with the fractal 

image. As a result, the user can still modify the position of the vertices by the click and hold 

option of the left mouse button or by defining their coordinates in the „Manual Simplex‟ 

section. When the tetrahedron is placed at a desired location, it can be connected with the 

rendered fractal by selecting the checkbox button „Relate to Fractal‟ in the „Manual Simplex‟ 

section. This action will not do any visible changes on the screen at that moment, but it will 

calculate the barycentric coordinates of each point belonging to the fractal with respect to the 

newly defined simplex. This  enables the user to perform affine transformations over the 

attractor with the manually added simplex. The connection between the fractal image and manual 

simplex is based on the same relation ( ) as for the minimal simplex. Again, each repositioning of the 

simplex vertices is followed by a fractal transformation visible in real time (Fig. 6).   

Figure 6.  Transforming the Barnsley Fern through a tetrahedron with manually plotted vertices. a. 

The manual tetrahedron after plotting the forth vertex. When the simplex is transformed by moving its 

vertices (b. vertex D, c. vertex A), the fractal follows the transformation 

Not only free modeling, but the application also offers defining precise transformations, 

like: translation for a vector  , rotation for an angle α around x-, y-, and z- axes, reflection, 

shearing w.r.t x-, y-, z- axes and scaling for factor s w.r.t. all axes (Fig. 7). None of the 

transformations described so far affects the IFS coefficients of the fractal attractor, meaning 

that the fractal is not generated over again. 

  

 

 Figure 7.  Scaling the Barnsley Fern fractal through the a. y and b. z axis with the transformation options 

available in the right menu. 

a b 

a b c 
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Among the other things, Fractal Transformer allows the user to modify the fractal by 

altering its coefficients in the ‟Edit Fractal Coefficients‟ modal window shown on Fig. 8 and 

thus experimenting, making own fractals. When the user clicks the „Edit‟ option of the 

„Fractals‟ menu (Fig. 3), the modal window opens and it is populated with the coefficients of 

the currently rendered fractal. The content of the window is divided into two main parts, the 

left under the „a‟ label for the   matrices and the right part is dedicated to the   vectors. The 

data fields accept only numerical values in order to avoid errors in the application‟s code. Any 

changes made in the coefficients will affect the fractal by clicking the „Update Fractal‟ button 

which is located in the bottom right corner of the modal window. 

Figure 8.  The Edit modal window containing the IFS coefficients of the Hexahedron fractal 

 

The edit option can also be used to create new fractal attractors that are generated by up 

to 20 mappings. If the number of mappings is less than 20, the rest of the matrices A and 

vectors b need to be replaced with identity matrix and zero vector.  

An interesting component of the application is the rotation animation option (Fig. 10). 

When the checkbox of this section is clicked and marked as selected, the currently rendered 

fractal image will rotate around the axes (the order of axes around which full rotation is 

performed is chosen randomly). To change the speed of rotation, the user can simply click and 

slide the mouse curser horizontally over the border between the green and gray area. As the 

speed value crosses the zero, from positive to negative and vice versa, the object changes its 

direction of rotation. 

The „File‟ menu located in the top left menu bar (Fig. 3) contains two listings - „Save as 

PNG‟ and „Save as JPG‟. Selecting one of the options will download the scene with the 

fractal in the user‟s Download folder in png or jpeg file type, depending on the chosen option. 

The menus will not be included in the downloaded image. 
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Figure 9.  Modifications of the Hexahedron fractal obtained by changing coefficients: 

a. A4(1,2) decreased for 0.32; 

b. A2(1,1) decreased for 0.2, A2(3,3) increased for 0.12 and A4(2,2) decreased for 0.19 

Figure 10.  The Animation sub-menu 

3.2  Code Analysis 

When generated by RIA, the image of the fractal attractor is entirely composed of 

points. In the presented application, we used the aforementioned algorithm to calculate the 

coordinates of the fractal points (Algorithm 1) ([2]). Once the array of points is populated, we 

leave out its first 20 elements since some of them might not belong to the fractal attractor and 

look scattered on the scene. Please note that with this algorithm, the probabilities to select a 

certain mapping    are equal. 

 

 

 

 

 

 

 

 

 

a b 
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Algorithm 1  Calculating the coordinates of the fractal points 
 

1:  procedure CalculateFractalPoints() 

2:   rnd ← a random number between 0 and 1 

3:  fractalPoints[0] ← [rnd, rnd, rnd] 

4:  for i ← 0 to (fractalPoints length - 1) do 

5:  fractalPoint ← fractalPoints[i] 

6:  random ← a random number between 0 and 1 

7:  for j ← 0 to matrixA length do 

8:       if (random >= j / (matrixA length) && random < (j + 1) / (matrixA length)) 

9:   product ← multiply fractalPoint with matrixA[j] 

10:   sum ← calculate sum of product and matrixB[j] 

11:             fractalPoints [i + 1] ← [sum[0], sum[1], sum[2]] 

12:       end if 

13:                   end for 

14:         end for 

15:  end procedure 

 

One of the options for fractal manipulation is a transformation with a standard-like minimal 

simplex. Its four vertices have the following positions ([1]): 

A (xMin, yMin, zMin); 

B (maxSum - yMin - zMin, yMin, zMin); 

C (xMin, yMin, maxSum - xMin - yMin); 

D (xMin, maxSum - xMin - zMin, zMin); 

where xMin, yMin, zMin are the minimal values of all x-, y- and z-coordinates of the 

fractal points, respectively, and maxSum is the maximum of the sums of the three coordinates 

of the fractal points.  

Algorithm 2 is based on the relation (3) for converting the rectangular into barycentric 

coordinates. 

 
Algorithm 2  Calculating the barycentric coordinates from rectangular coordinates 

 
1:  procedure CalculateBarycentricCoordinates 

2:         vertexMatrix ← addValues(vertexA.x, vertexB.x, vertexC.x, vertexD.x, vertexA.y, 

3:         vertexB.y, vertexC.y, vertexD.y, vertexA.z, vertexB.z, vertexC.z, vertexD.z) 

4:         matrixInverse ← calculate inverse matrix of vertexMatrix 

5:         for i ← 0 to (fractalPoints length) do 

6:       fractalPoint ← fractalPoints[i] 

7:       pointVector ← addValues(fractalPoint.x, fractalPoint.y, fractalPoint.z) 

8:       barCoordinates ← multiplyMatrices( matrixInverse, pointVector ) 

9:                 barycentricPositions[i] ← addValues([barCoordinates[0], barCoordinates[1],  

10:               barCoordinates[2], barCoordinates[3]]); 

11:       end for 

12:  end procedure 
 

To determine the positions of the fractal points after a simplex vertex is moved, i.e. to 

convert barycentric to rectangular coordinates resembling the position of points of the 

transformed fractal, Fractal Transformer implements the Algorithm 3, based on the relation (2). 
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Algorithm 3  Calculating the Cartesian coordinates of the fractal points from barycentric coordinates 

 
1:  procedure RecalculateCartesianCoordinates 

2:         for i ← 0 to ( fractalPoints length ) do 

3:                   x ← 0, y ← 0, z ← 0 

4:                   for j ← 0 to 4 do 

5:                x += simplexVertices[j].x * barycentricPositions[i][j] 

6:       y += simplexVertices[j].y * barycentricPositions[i][j] 

7:       z += simplexVertices[j].z * barycentricPositions[i][j] 

8:          end for 

9:                    fractalPoints[i] ← (x, y, z)  

10:         end for 

11:  end procedure 

 
 

Since the steps of the algorithms 1 and 2 are executed only once, it is evident that the 

third algorithm which is performed at every transformation of the simplex, bears the 

responsibility for the speed of the transformation.  

3.3. Time Complexity Analysis 

The algorithms given in this subsection are obviously dependent on the number of 

fractal points, so it only remains to determine the complexity of that dependence. 

The first two instructions of Algorithm 1 will run one or constant time regardless the 

number of fractal points. The sequence of statements within the first for loop executes N 

times, where N is the number of fractal points. Every time the outer loop performs, the inner 

for loop executes between 1 and n times depending on the value of the if condition, where n is 

the number of matrices A, or IFS mappings. Since the value of IFS mappings is relatively 

small and usually smaller than 10, we will consider the running time of the nested for loop as 

a constant. Therefore, the total time complexity of Algorithm 1 is (     ), or O(N). This 

means that the execution time is linear and directly proportional to the input size, or the 

running time grows linearly as the input size increases. 

The time complexity of the first two statements of Algorithm 2 is constant, since they 

are not dependable on the input size. The following loop and its sequence of statements is 

executed N times. The complexity of each statement is 1, so the total time for the for loop is 

    which is O(N) overall. 

The third algorithm calculates Cartesian coordinates for each point of the fractal 

knowing the barycentric coordinates in a nested for loops. The complexity is less than or 

equal to (   ) because the first for loop iterates N times while the second one, 4 times. The 

run time of a single statement within these loops is 1. Since the „Big O‟ metric ignores the 

constant factors, which is the complexity of the nested for loop in this case, the overall time 

complexity of Algorithm 3 is linear O(N). 

The running time of the presented application has shown to be linearly bound with the 

number of points that constitute the fractal image. This number is defined and can be 

modified directly in the code. The linear time is the best achievable result of time complexity 

for a case like this, where the algorithm has to sequentially read the entire input. The 

efficiency of such algorithms can be improved by the use of hardware technologies that 

support parallel computing. 
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4. Conclusion and Future Work 

Fractals can undoubtedly change the way we see the world and ourselves. It is 

fascinating how the fractal geometry can produce spectacular and often complex shapes 

through a simple and straightforward process of iteration. The resulting images are striking 

yet intriguing, attracting many scientists and artist for 30 years already. 

This paper presents a novel 3D application for interactive and real-time transformation 

of fractals generated with the IFS approach. The rendered image of the fractal can be 

interactively manipulated through control points and by setting values. The control points are 

either manually added or they are vertices of a standard-like minimal simplex (in the second 

case the convex hull property when modeling is preserved). The vertices in both cases can be 

dragged and dropped one at a time, defining a unique affine transformations. Every change in 

the position of the vertices is simultaneously and continuously followed by the same affine 

transformation of the fractal which is visible in real-time. Besides this, the fractal can be 

interactively transformed by changing the values of settings that represents the basic affine 

transformation such as rotation, scaling, translation, shearing and reflection. In addition, 

Fractal Transformer offers options for rotation animation and for saving the fractal as an 

image in a specific format. The editing feature can produce interesting variations or 

completely new fractals by changing their coefficients. 

Although Fractal Transformer offers various approaches for fractal analysis and 

exploration, many possibilities for extending the functionality of the application still remain. 

One of the improvements would be transformation of a selected part of the fractal attractor. 

The inclusion of this feature would enrich the options for fractal manipulation and may lead to 

interesting modifications of known fractals. So far, the probabilities for choosing an affine 

transformation from the set of mappings are equal. Adding possibility for assigning different 

probabilities to the affine transformations will be surely useful. To provide even more 

interactivity to the application, the changes of the edit modal window might be visible in real-

time. Furthermore, a possibility for modeling the fractal with a minimal polyhedron or some 

other solid that will contain the fractal and will have more than 4 vertices, might be 

implemented. Also, the functionality of the Fractal Transformer would be enhanced by adding 

other types of transformation, animation or morphing. These are only few of the possible 

refinements of the application, but depending on the area where it will be used, the added 

features would be more specific. 
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