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Abstract 

 In this paper, we are proposing a new algorithm that improves the performance of the 

DBSCAN clustering algorithm using a packed X-tree. The proposed algorithm does not require the 

minpoints and eps values. We have extensively  described  how  the  system is  achieved  and we 

have also proposed a new effective method for finding the k- nearest  neighbours of spatial objects 

in a large database. The study shows that the proposed method is very efficient and will greatly 

accelerate the operations of density based clustering in large dataset as against the existing 

methods. 
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1. Introduction 
 

The study in [1] reveals that the major challenges militating against effective 

management of large spatial datasets is storage utilization and computational complexity 

(both of which are characterised by the size of spatial big data which now tends to exceeds 

the capacity of commonly used spatial computing systems owing to their volume, variety 

and velocity). Spatial database systems incorporate space in database systems, they support 

non-traditional data types and more complex queries, therefore in order to optimise such 

systems for efficient information processing and retrieval, appropriate techniques must be 

adopted to facilitate the construction of suitable index structures. Though a single spatial 

data contains observations with locations and identify features and positions of objects on 

the earth’s surface and they present us a framework for putting our observations on the 

map [2], large spatial datasets stems from scientific activities these days that tends to 

generate large databases which always come in a scale nearing terabyte of data size. 

Several access methods have been proposed to optimise spatial database systems for 

efficient information processing and retrieval especially in a large multidimensional spatial 

dataset environment using appropriate  techniques  to  facilitate  the  construction of 

suitable index structure for these database systems. This paper describes the design of an 

effective system for spatial query processing for clustering of data in large datasets.  
 

2.  Related Works  
 

[16] Suggested that one of the ways to improve the speed performance of the DBSCAN 

algorithm could be through the implementation of an indexing structure that can support 

spatial data access method and as such speeds up the neighbourhood finding operation for 

the DBSCAN clustering algorithm. This notion has attracted so much interest and has 

given rise to variation of the clustering algorithm which main aim is to build a DBSCAN 

algorithm using different indexing structure that can implement spatial operations. 
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PDBSCAN was suggested by [17], the algorithm applied a distributed R*-tree for 

partitioning the dataset among many computer nodes. Distributed R*-trees partition data 

but they replicate the entire index on each node. [18] Suggested implementing the  

DBSCAN algorithm based  on  the  PP-R-tree. This variation increases in performance if 

the database is initially stored on an r-tree indexing structure. [19] Also proposed the P-

DBSCAN, a novel parallel version of the existing DBSCAN algorithm applied in a 

distributed environment by implementing a priority R-tree. In [20], the K-dimensional tree 

(also known as the kd-tree) was applied to solve the problem of database size especially in 

the case where the size becomes so large (which is one of the limitations of the existing 

DBSCAN algorithm). Their algorithm applies a k-distance graph method to automatically 

calculate the values of Eps and Minpoints. [21]  Applied  the  extended  CUDA-DClust  

algorithm which is a block tree indexing structure to extend the functionality of the 

existing DBSCAN. Their DBSCAN clustering algorithm version (Mr. SCAN) is designed 

to handle extreme cases in density based clustering using a hybrid parallel tree-based 

implementation to combine a network of GPGPU-equipped nodes with an MRNet tree- 

based distribution network. The algorithm (Mr. SCAN) effectively partitions the point 

space and optimizes DBSCAN's computation over dense data regions in other to overcome 

the problems encountered by previous implementations. In  [22]  the  kd-tree  was also  

used  to implement the DBSCAN algorithm. The package DBSCAN as they call it is a fast 

reimplementation of several density-based algorithms of the DBSCAN family for spatial 

data. Theses includes OPTICS (ordering points to identify the clustering structure), and the 

LOF (local outlier factor) clustering algorithms. The application of the kd-tree data 

structure was to accelerate a faster k- nearest neighbour search. The SR-tree based 

DBSCAN was also proposed by [23]. Their variation of the DBSCAN algorithm they claim 

performs optimally for determining the Eps-neighbourhood of an object (which is one of 

the most difficult task in running the existing DBSCAN algorithm). In other words 

according to them, to determine the Eps-neighbourhood of a given spatial object, its 

encapsulating region has to be determined, and the tree has to be traversed from the 

children of the object to the leaves [23]. 
 

3. How the  DBSCAN Clustering Algorithm Works  
 

As described by [24], the DBSCAN clustering algorithm is optimal, due to its 

efficiency in performance when used within spatial  databases which  otherwise can  result  

to irregularly shaped clusters. The algorithm is density based as such scales well in f inding 

similarity between densely populated spatial object. It is known to perform well in 

clustering data without prior knowledge of the number of clusters it contains and it also 

performs optimally in filtering noise from a dataset. The most important feature of the 

algorithm is that its generalised version GDBSCAN [25] can cluster point objects and 

spatially extended objects  (based  on  spatial  and  non-spatial  attributes). 
 

Despite all these abilities, the DBSCAN has some major  limitation  which  includes  

high  time  consumption  for finding neighbourhood of a given data point [16], 

performance degeneration with increase in dataset size [20]. The DBSCAN algorithm 

clusters data points based on density. Its idea of density is based on two parameters (Eps 

and Minpoints). The algorithm operates by finding the  Eps-neighbourhood of  each  given 

point.  The  Eps- neighbourhood of a point p is that set of points that are located  around  

the  Eps-distance  of  the  point  p.  p  is marked core point if there are at least minpoints 

points in its Eps-neighbourhood. Any other points could be classified as non-core points. 
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Again the non-core points has two distinct classification (that is a border point or a noise 

point). Border points are a non-core point that contains at least one core point in its Eps-

neighbourhood, while noise points do not. In the DBSCAN algorithm, clusters are formed 

by the set of core and border points that are reachable from a particular core point. When 

the algorithm finds an unvisited core point it considers it a new cluster and then forms a 

new cluster on it using its Eps-neighbourhood. These clusters could be expanded by 

finding the Eps-neighbourhood of each point, which is classified in the cluster until all 

points that are reachable from the first core point are found. 

 

            
 

Figure 1: DBSCAN algorithm core and border points 
 

This means that the performance of the algorithm greatly depends on the value of Eps-

neighbourhoods that is chosen (see figure 1). 
 

A.   Existing DBSCAN Algorithm 
 

The algorithm takes as an input: 

A set of points P in space (2d). 

A neighbourhood N and a neighbourhood value eps (see figure 1). 

And a parameter minpts, which determine when a cluster 

can be taken as dense. 

i. The algorithm starts with an arbitrary unvisited starting point. 

ii. Then extracts the neighbourhood of that point using the 

eps value (and making sure). 

// all points within the eps distance are in the same neighbourhood. 

iii.   Clustering   process   begins   when   enough   points 

(minpts)  are  found  around  the  neighbourhood with  a distance not more than eps between 

each points. 

//For all points that belongs to the cluster (including its 

eps neighbourhood), repeat steps 3 through 5 

iv. Then new unvisited points are extracted and processed (this might lead to the discovery 

of further clusters or even noise). 

v. The process terminates only when all points are visited. 
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Directly Density Reachable. A point p is directly density reachable from another point 

q, if p is within the eps (Figure 2a) neighbourhood of q and q is a core point (core because it 

has at least minpts within its neighbourhood – see Figure 2b).  
 

4. Clustering  
 

Clustering according to [4] is described as a data mining technique that groups data  

into  meaningful subclasses, known as clusters. The procedure is applied to optimize the 

identification of the differences between subclasses in a  large  database  class.  Different  

types  of  clustering methods according to [3], exist including: hierarchical,partition, 

density based method and grid based method. K-means, K-medoids, BIRCH, DBSCAN, 

STING, Wave- Cluster, etc. are several clustering algorithms. DBSCAN is an effective 

density based method clustering algorithm for spatial database systems which can detect 

noise and outlier, cluster arbitrary shaped point dataset and do not require the number of 

clusters a priori. Notwithstanding the algorithm deteriorate in performance when data size 

becomes too large and may not perform optimally if the wrong values are chosen for 

minpoints and eps (which are two vital components of the algorithm). 
 

A.   Index structure for accelerated clustering algorithms:  

Basically, as a general approach any  n-dimensional data structure can be used for 

indexing the data in a spatial database, such as binary search trees and B-trees, R-trees, X-trees 

e.t.c. [7]. In most cases the R-tree based structures are used ([9]; [10]; [11]; [12]; [7]; [6]; 

[13]) and they are constructed  using  coordinates of  the  objects  minimum bounding rectangles – 

MBRs – (covering or containing the   spatial   objects   under   consideration)   as   input.  
 

Clustering algorithm for a spatial database can easily be enhanced for fast nearest 

neighbour search if they are indexed, because the indexes serve as good substitutions for 

poor performance caused by dimensionality [5]. Spatial index structures like the R-trees 

[11] are normally used in a spatial database management system to speed up the processing 

of queries such as region queries or nearest neighbour queries. When a SDBMs is indexed 

by an R– tree, then the R–tree nodes helps to accelerate the search operations [8] For 

instance, the branch and bound paradigm for nearest neighbour search proposed by [6], is a 

method that uses the two technique (mindist and minmaxdist) to order the nearest 

neighbour search, the mindist measures the minimum distance between a query point q and 

another point p, while the minmaxdist measures the minimum of the maximum of all 

distances from q to any vertex or face of the rectangle containing p, with these measures   

the lower and upper bound of the real distance between q and p is gotten and used for the 

calculate the nearest neighbour of all the objects in the index structure space. A modified 

version of the [6] method was proposed by [13], the new method avoided the use of the 

minmaxdist and applied only the mindist measure  redundant search  elimination  for  

highly correlated data. Their method shows better performance in terms lesser number of 

disk accesses for individual query operation but it is limited by a poor computational 

strength. The X-tree proposed by [15] has the following properties which guarantees a 

better performance compared to the rest: 1) the super-nodes and overlap minimal  split  

provide  higher  speed  up  for  point  and nearest neighbour queries. 2) With the increase 

in X-Tree search time which grows in a logarithmic manner with the database size, the tree 

structure scales well for very large database sizes. 3) Though the CPU-time of the X-tree is 

higher than that of the TV-tree, R*-tree and some others (because the nearest neighbour 

queries require sorting on the min-max distance [15], it is still better than that of an R-Tree. 
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For databases indexed using any of these hierarchical data structures (the R-tree and its  variants 

including the X-tree), nearest neighbour search algorithms can decide to prune a branch of the tree 

if it identified that the  region  (feature  space)  that  they  represent  do  no promise any object 

belonging to the nearest neighbour of the query object processed [14]. 

 

B.   Problems of existing DBSCAN: 
 

Clustering algorithms according to [24], must satisfy the three  basic  requirements  

of  a)  have  a  basic  domain specific knowledge to be able to determine the input 

parameters, b) discover clusters with arbitrary shape, and c) have a good efficiency on 

large databases. Despite the efficiency of the existing DBSCAN algorithm, it is well 

known to possess some major limitations, which include high time consumption for finding 

neighbourhood (eps) of a given data point [16], performance degeneration with increase in  

dataset size  [20]. The DBSCAN algorithm clusters data points based on density and the 

underlying idea of density is based on the two parameters (Eps and Minpts). Though the 

existing method and its so many (R- tree  indexed)  variants  performs  well  in  

discovering clusters with arbitrary shape, they do not scale well in terms of acquiring 

enough domain specific knowledge to be  able  to  determine  the  input  parameters  Eps  

and Minpts, which is attested by the fact that users decision of these  parameters (which is  

the  mode  of  entry for  the parameters) has huge undesirable effect on the algorithms 

behaviour. More so, in the aspect of measuring the algorithm’s efficiency on large 

databases, index structures like  the  R-trees  [11]  are  normally  used  in  a  spatial 

database management system to speed up the processing of queries such as region queries 

or nearest neighbour queries. When the SDBSs is indexed by an R–tree (or any other  

indexing structure), then the  tree  nodes helps to accelerate the search operations [8]. 

Never-the-less, the basic limitations of the existing DBSCAN algorithm is compounded by 

the fact that the R-tree and its variant [15] are not adequate for large high-dimensional data 

sets as the index structures supports high overlap of the bounding boxes in the directory, 

which increases with growing dimension. The problem with this is that most large spatial 

databases are often represented using high- dimension feature vectors, thus because feature 

spaces most often tend to contain multiple instances of similar objects, then the database 

built using such a feature space is  bound  to  be  clustered  and  then  if  the  database  is 

indexed with an R-tree there would be cases of redundant search of rectangles due to the 

high overlap between MBRs of the R-tree nodes. According to [8] several new index 

structures (including the A-tree, VA-tree and the X- tree) have been proposed that 

outperforms the R-tree for indexing high dimensional data but most of them show degraded 

performance as dimension increases [5], [15]; [8]. Thus based on these premises we  

propose  an improved DBSCAN algorithm that is accelerated using an adjusted X-tree (aX-

tree) and scalable for large datasets. The main objective of the proposed algorithm is to 

save users the stress of predicting the appropriate value for the main   input   parameters   

(Eps and  Minpts) for the algorithm, by equipping the new algorithm with the intelligence 

of fast nearest neighbour (E) computation for eps and the assumption of m (the maximum 

capacity of an aX-tree node) as the Minpts. 
 

5. Proposed Method 
 

The proposed system is an improvement on the work we described in [26] and [27]. 

However, we have made new suggestions to enhance the performance of the proposed 

algorithm. The bulk-loading algorithm in subsection A of this section uses the pre-

processing technique introduced in  the  [26].  However,  the  aX-DBSCAN  algorithm  in 
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subsection B, uses a different procedure (from the one we proposed  [26])  for  calculating 

and finding the nearest neighbour of a given object in space for effective clustering 

purpose. This section explains in detail the proposed  system,  how  it  works  and  what  

makes  it different from the existing system. 

The clustering procedure starts when the aX-tree is loaded into memory (as outlined 

in Sub-section A), but this follows after the objects have been sorted and partitioned on the 

X-axis of the space (2D in this case) using range partitioning. The sorted rectangles are 

grouped into J = S/m and the space is sliced into square root (J), from  here the procedure 

in subsection A begins. This process is fully described in [26] [27]. After indexing the 

database using the aX-tree, the distance between the leave nodes are computed, sorted and 

stored in other to determine the value of eps (E) which is an alternative to the eps value in  

the original DBSCAN algorithm proposed in [24]. 

Given: 
 

A point or a spatial database S {assuming that records consists of real number values} 

Let 
S be the total points 

k =an arbitrary number 

m is the maximum capacity of an X-tree node 

A.   Bulk Loading the X-Tree (aX-tree) 

Start: 

Step 1. Load the collection of the MBRs (in groups of m) 

of sorted spatial objects from a temporary file. 

Step 2. Create leaf nodes i.e. the base level (L = 0) 

While S 

/* i.e. while pre-processed sets of objects > 0*/ 

Step 3. Create a new aX-tree node, 

Step 4. Allocate the subsequent m rectangles to this node 

/* During node creation avoid split that cause overlapping, by extending one super-node in 

the current level (only for leave level) 

Step 5. Create nodes at higher level (L + 1) 

While (nodes at level L > 1) 

Step 6. Sort nodes at level L ≥0 on ascending creation time 

Repeat steps 2 

Step 7. Return Root 

 

B.     Our clustering (aX-DBSCAN) algorithm 

Start from root 
Locate ax-tree leaf node with lowest x-value 

→ L = 1 
→ While L ≥ 1 

1.  Determine Φ > 0 
/* Φ is the parameter that determines which 

cluster is dense*/ 

/* value of Φ = (at least) m +1 so as to avoid clusters that has only one object */ 

2.  Find a neighbourhood value (E > 0) 

/* the value of E (nearest neighbour to an 

object s∈ S) outlined in section D. 
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3.    Clustering 

i.     Find Bi = {s ∈  S: d(si, s) ≤ E } 

// (d = distance between s and si  for 

all i = 1, 2….m) 

ii.    If | Bi | ≤ Φ, THEN 

iii.   REJECT Bi 

// Bi is an outlier 

ELSE 

iv.   Find the relationship (Bi ∪   Bj ≠ Ø) 

v.    Repeat iv until there is no more union 

 

C.  How the proposed system works 
 

Initially, we create temporary file that stores all the calculated distance between the 

points using the distance function: 
 

Distance (p, q) ≥ distance (MBR (p), MBR (q)) (for any point or object Ei in the tree, i = 1….. S). 

 

Assumption 1: 

For each node v, the distance between any two points in that node say Si and Sj = 0 

Proof: 

The distance between all the elements of kth partition in figure 2b is equal 

considering the fact that they are all located in one internal MBR (r) bucket (as compared to 

other MBRs) based on their spatial occupancy. Therefore, since Φ = (at least) m +1 and m is 

the maximum capacity of an aX-tree node, it means all the objects in Vj automatically falls 

into the same cluster. Thus: distance (Si,  Sj) in Vj  = 0; i ≠ j; i, j ≥ 1. On the other hand 

for super-node s in figure 2b therefore whether s forms a valid cluster depends on the value of 

Bi. 

Other assumptions 
 

a. The distance to the k-nearest neighbour (calculated by the distance function) represents 

eps neighbour, therefore the   eps-neighbourhood  (E)   are   those   points   whose 

distance falls within k-th distance. (I.e. eps- neighbourhood = points around k-nearest 

neighbours 

 

b. Using the aX-tree, the edges of the MBR containing the points in the space represents 

their nearby neighbours. Therefore we calculate the distance between the  query MBR  

and  the  MBRs that  share  edges  with within k-distance 

 

c. The choice of Φ = m in the aX-DBSCAN algorithm is based on the fact that all elements 

are packed into nodes in all levels of the tree equally, therefore setting the value of the 

minimum objects in the nodes to be equal. As such core points or core objects are those 

elements having up to minimum points in their immediate neighbourhood. Therefore we 

have assumed Φ = m to match the requirement of  minpoints as  in  the  original 

DBSCAN algorithm 
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Furthermore, Super-nodes are created only at the leaf using our packing algorithm as 

described in subsection A. Super nodes are formed when the total number of entries in a 

given directory node exceeds m but cannot be packed into a new node without destroying 

proximity. 
 

 

 

 

 

 

 

 

 

 

 

Figure 2a: aX-tree structure - packed rectangles. 
 

 

 

 

 

 

 
 

 

 

 

Figure 2b: aX-tree structure - the tree nodes 
 
 

 

Implementing the DBSCAN algorithm based on indexing the database on an aX-tree 

has a lot of benefits. Closely related to the work in [6] which was modified by [13], our 

work has taken a much easier approach for KNN calculation by limiting the number of 

distance calculation to only involve the nodes and not the objects itself at the first stage. 

Starting from the root (S), the leftmost leave node (L) on the tree is located and the 

clustering process begins, MBRs (r) which do not fall within k-th distance of  the  leftmost  

r  is  pruned  and  then  clustering  is performed within the objects in the remaining r which 

passed the  distance test.  At  the  end  of  the  first  stage clustering process, the distance is 

computed between the last r in the current neighbourhood and the children of the next 

consecutive L +1 level of the tree and then continues until the last node is processed. Using 

this method, clustering progresses easily by cutting off all nodes not within the limit of the 

K-Nearest Neighbour, thereby making the procedure a bit faster for very large database. 

The idea behind this is that since similar objects are sorted and  packed  together in  the  

same  bucket  (partitions in figure 2b)  in  a  recursive manner  up  to  the  root then, 

objects which do not fall into a particular partition/group do not belong to that eps 

neighbourhood. The formula below calculates the minimum distance between a query 

MBR and other MBRs: 
 
 

Given two leave node of the tree structure: MBRs rI, rJ, Dist (rI, rJ) = sum (n)| rI - rJ |2 

(where i ≠ j and n is the different dimension). 

D. How we find eps (the nearest neighbours E) 
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For finding the closest neighbours considering the coordinates of the lower-left and 

upper-right corner of the rectangle given as (XAi; XAj; YAi, YAj) in figure 3, we are 

presented with the following scenario. 

Case 1 The objects intersects and Case 2 The two objects are classified as adjacent 

because they share either a common edge or a vertex. Therefore for any two rectangle 

(MBRs) say A or B in n dimension, we have: 

rA = {XAi, YAi}                 { i > 0 ≤ n} 

rB = {XBi, YBi} 
 

CASE 1: 
XA1 < XB2 and XA2 > XB1 and YA1 >YB2 and YA2 < 

YB1 // i.e. rA intercepts rB = TRUE THEN 

Return 

Dist (rA, rB) = 0 
 

Else 

CASE 2: 
 

XB1 > XA2 or XB2 < XA1 or YB1 > YA2 or YB2 < YA1// 

i.e. rA intercepts rB = FALSE 

Dist (rA, rB) > 0 

→ XB1 > XA2, XB2 < XA1 = Dist (rD, rE) 

Or YB1 < YA2 or YB2 > YA1 = Dist (rC, rD) 
 

Finding the closest rectangle becomes easy because the databased  is   indexed   with   

packed   X-tree,   where rectangles are already packed into buckets (MBRs). Based on this 

advantage and because these MBRs are axis aligned and packed in a sorted order, all we need 

to do therefore is: having known the min and max values of the XY coordinates (i.e.  XA1, 

YA1, XA2, YA2) for rectangle A in figure 3, 
 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 
 

Figure 3: relationship rectangles (nodes) 

 

Thus when the left and right edges of the rectangles are different i.e. XB1 > XA2, XB2 

< XA1 we compute Dist (rD, rE). 

Else  when  case  →  YB1  <  YA2  or  YB2  >  YA1  then 

compute = Dist (rC, rD). 
 

Based on the number of boundary points around each MBR (which depends on the 

dimension), we carried out a series of test. For each vertex in the adjacent (or neighbouring) 

polygon, we compute the distance to each vertex in the query polygons and eventually, we 

find the closest (using their Euclidean distance Dist). 
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Given  any  two  (2)  MBRs  in  n-dimensional  Euclidean space rA and rB, let rA = 

(Xa, Ya), and rB = (Xb, Yb), be their upper right and lower left corners respectively, then Dist 

(rA, rB) = min {min {dist (ra, rb)}},                      (1) 

//∀ ra ∈ rA; rb ∈ rB

 
 (I.e. for any point/object ra in rA, find the least distance to any point/object in rB; then find 

and store all the smallest distance in ra) 
 

What is the value of K 
 

After  these  distances  are  calculated  and  sorted  in  an ascending order then. 
 

1. We create a buffer for the most k closest neighbours. 

2. Based on this, we prune the MBRs based on the distance of the furthest from k 
 

Following the above description, the next stage follows the steps below, where the 

distance calculation is based on the distances between the nodes i.e. Euclidean distance 

between nodes i through N 
 

 

Following the above description, the next stage follows the steps below, where the 

distance calculation is based on the distances between the nodes i.e. Euclidean distance 

between nodes i through N. 
 

6. Performing our Clustering Algorithm 
 

Starting from the root node 

→Take the leftmost internal node, search all its child until you get to the leaf (i) 

While on the level → leaf 

→ Start from the leftmost node 

→Find   E   (k   -neighbourhood   as   described above) 

Begin clustering 

→Find all directly reachable nodes (from the 

aX-tree) as section V (D) 

→  Follow  the  rest  of  the  Clustering  (aX- DBSCAN AGORITHM) until the last 

leave node 

(r) in the current neighbourhood 

→ Move to the children of the next consecutive i 

+1 level of the tree and then continues until the last node in the tree is reached. 
 

7.   Conclusion 
 

DBASCAN algorithm is one algorithm that is well known and used in big data analysis 

for clustering a large set of spatial data in other to find important information from the 

data. Studies have shown that the algorithm does not perform optimally when the size of the 

database begins to grow and that it has a very bad worse case complexity in terms of finding 

its two most important parameters the eps and the minpoints. In this paper, we examined 

some of the  existing  methods that  has  tried  to  improve  the performance of the algorithm 

in terms of analysing huge databases and in its time consumption in the process of trying  to  

choose the  appropriate  minpoints  and  eps values. We discovered that apart from other 

spatial access method which has been proposed to improve the existing DBSCAN   clustering   

algorithm,  the R-tree  spatial indexing  method  and  its  variants  has  been  the  most widely 
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used. And so we proposed the use of a different indexing structure which has a higher 

capability than the R-tree in terms of handling data in high-dimensional data space. The sort 

based X-tree (aX-tree) that we propose, like the original X-tree is focused on creating a 

spatial indexing method with overlap minimal split but in addition, the new X-tree is pre-

sorted and packed thus increasing its capabilities. 
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