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Abstract 
 

Various computational methods are being used to predict Protein-protein interactions 

(PPI) from many different perspectives in solving different problems which are critical for 

many biological objectives. One of the important problems developing high-accuracy 

techniques for identifying PPI to better understand proteins functions, diseases, and therapy 

design.  Deep-learning algorithms have achieved effective results in numerous areas, but their 

leverage for PPI prediction has not enough. We proposed a hybrid model of deep-learning 

algorithm and random forest, to study the PPI prediction. The proposed model achieved an 

average accuracy of 90.04% with Roc area 0.788and Matthew Correlation Coefficient of 

0.477 Benchmarking, which are promise to those achieved with previous methods. We think 

this research is from the first to apply hybrid model of deep-learning and random forest to PPI 

prediction, and the results demonstrate its potential in this field. 
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1. Introduction 

PPIs play major roles in many biological processes, such as immune response, cellular 

organization and signal transduction. Analysis of PPI is a great importance and may focus on 

drug target detection and aid in therapy [2]. Small-scale experimental methods like 

chromatography and Biochemical assays have long been used to identify PPIs, but its 

contribution is low coverage of the huge PPI database due to their low efficacies [1]. High 

technologies, such as mass spectrometric protein complex identification [5] and yeast two-

hybrid screens [4] have generated voluminous data, but, they are expensive and time 

consuming. Also, these methods may not be applicable to all organisms and most often 

produce false-positive results [6]. Therefore, high computational techniques are needed to 

identify PPIs with high quality and accuracy.  Newly, many computational techniques have 

been adopted to solve this problem. Some of these, have attempted to extract new protein 

information, whereas the others develop a new machine e learning algorithms. In Shen et.al 

[7] a protein information mining any three continuous amino acids as a unit then calculate the 

frequencies of those conjoint triads in the protein sequences. Presented in [7] that PPIs could 

be predicted by sequences alone. Other methods and techniques, such as amino acid index 

distribution [9] and auto-covariance [8] were developed to extract attributes such as  physical 

chemical, frequencies, and locations of amino acids to represent a protein sequence. Machine-

learning algorithms such as support vector machine and its derivatives[10, 11], neural 

networks [13] and random forest [12], have been applied. However, most studies provided 

only the results of cross-validation, and did not test prediction results [7, 11, 14, 15].Deep-

learning mimic the deep neural connections and learning processes of the human brain, have 

received considerable attention due to their successful applications in image and speech 
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recognition [16, 17], decision making [19] and natural language understanding [18] .Deep-

learning algorithms can handle large data and automatically learn useful and more abstract 

features [20]. Recently, Deep-learning algorithms have been applied to bioinformatics due to 

increasing amounts and dimensions of data generated by computational biology [21–24]. Sun, 

Tanlin, et al.[42] was the first one applied  the stacked auto encoder algorithm, to study the 

sequence-based PPI ,using the prediction for various external datasets. 

Xiong et al [25] applied a deep neural network model to predict DNA variants causing 

aberrant splicing. Their method was more accurate than traditional models. Alipanahi 

constructed a Deep Bind model using convolutional networks to predict sequence specificities 

of DNA- and RNA-binding proteins, and identify binding motifs [26]. Identifying the effects 

of noncoding variants is also a major challenge in genetics. Zhou et al. developed a Deep SEA 

to learn a regulatory sequence code from large-scale profiling data, predicting a chromatin 

effects of sequence alterations [27]. Quang and coworkers constructed the DnaQ model 

achieving more than a 50% improvement compared to other models for predicting the 

function of non-coding DNA [28]. Spencer et al.[29] exploited a deep belief network (DBN) 

for protein function prediction to predict protein secondary structures and they reach an 

accuracy of 80.7% . Then Sheng et.al. [30] Increased the prediction accuracy to 84% using 

deep convolutional neural. Heffernan et al.[31] predict secondary structures and  also predict 

backbone angles and solvent accessible surface areas. For more detailed of the applications of 

the deep learning algorithms in computational biology can be found in the review [32].Other 

machine learning techniques such as random forests and support vector machines have been 

used to predict interactions from protein sequences (Ben-Hur  et al. [46] ; Bock et al. [47] ; 

Chan et al. [48] et al. [49]. Park et al. [50]establish a comparative study of sequence-based 

prediction identified three top methods: PIPE2 [51], Sig  Prod et al[52], and Auto Correlation  

Guo et al.[53]. M Alfonse et al. [70] presented a brain tumor diagnostic system. The system 

classify the type of the tumor which is benign or malignant using support vector machine. H.  

Mohsen et al. [71] proposed a classification model for Alzheimer's disease based on discrete 

wavelet transform feature extraction technique and PCA for feature vector selection then 

features are entered to linear discriminant analysis (LDA) classifier. 

In this study, we applied deep learning and random forest hybrid model to study 

sequence-based PPI predictions. Models based on protein sequence achieved the best results 

on 10-fold cross-validation .The best model had an average accuracy of 90.04% with Roc area 

0.788 and Matthew Correlation Coefficient of 0.477  Benchmarking for the whole training 

benchmark dataset the results were promising and achieved prediction performance that 

surpassed previous methods. 

2. Materials and methods 

2.1 Datasets 

The dataset in this study adopted from [3] to train-test the proposed model. The dataset 

contains 151 protein complexes whose key feature is the availability of both bound and 

unbound structures of the interacting proteins, for67235 number of instances, Savojardo et al 

[3] focus on the subset of protein complexes that met the following criteria: 

• Both bound and identical unbound structures obtained via X-Ray crystallography. 

• Interfaces estimated from the bound structure that successfully mapped to unbound 

structures. 
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2.2 Features description 

The feature descriptors were adopted to perform the classification task. The complete 

feature set consists of 5 different groups of descriptors encoded in a 34-dimensional real 

vector for each input residue. Table 1presents a set of the different descriptor sets used in this 

research adopted form Savojardo et al [3]. 
 

Table 1. The descriptors adopted in this study to encode surface residues 
 

Descriptor Features Position 

Sequence profile  20 1-20 

propensity score 1 21 

Conservation score 1 22 

Residue co-evolution scores  2 23-24 

Residue physical-chemical properties 10 25-34 

 
2.2.1 Evolutionary information 

Evolutionary information for each position of the protein sequence was extracted in 

the form of a sequence profile. For a given protein sequence, the BLAST Altschul et al [43] 

program was exploited to search the Uniprot database for similar sequences and the 

conforming profile was extracted as additional BLAST output. Then, for each surface residue 

i, a vector vi  was computed by averaging sequence profile entries over the surface structural 

context of the residue i, i.e.   

   
 

|    |
∑                       (1) 

 

2.2.2 Residue interface propensity 

The following log-ratio formula used to score the propensity pk of each residue type to 

be in interaction sites:  

 
      

      

      

        (2) 

 

Where      is the frequency of residue of type k in interaction sitesand       is the 

frequency of residue type k in the surface. For each cross validation iteration, propensities and 

frequencies scores be computed on the training stand kept fixed when encoding the testing set. 

2.2.3 Residue conservation 

Using the sequence profile obtained from BLAST, a conservation score ci calculated for 

each surface residue position i: 

   
     

 

    
∑             

 
   

                (3) 

 

Where K=20 and Pij is the frequency of residue type j at position i. 

2.2.4 Residue co-evolution scores 

There are a lot of methods to extract residue co-evolutionary indexes starting from a 

MSA. In Savojardo et al. [3] adopted sparse inverse covariance estimation as in the Jones et 

al., [44] as well as Mutual Information. 
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2.2.5 Residue physical -chemical properties 

Kidera et al. [45] were introduced 10 orthogonal properties used to represent the 

physical-chemical nature of each residue. The 10 properties were derived with statistical 

analysis of a range of 188 different physical properties of naturally occurring amino acids. 

Each residue was represented in the surface according to its type with a 10-dimensional 

vector. 

2.3 The DL-RF prediction Model 

In this work, we adopt Deep learning and Random forest to study PPI or not. The 

model was trained on protein chains in the dataset whose surface residues were represented 

with the 34-dimensional feature vectors described in Table1in the previous section. The 

model was trained and tested using the stacking hybrid implementation as shown in figure 1. 
 

Figure 1. The Proposed Hybrid model 

 

 

2.3.1 Random Forests 

Random Forests developed by Leo Breiman [65] is a method that joins several 

individual classification trees that operates by constructing a multitude of decision trees at the 

training time and yielding the final class that is the majority vote of the classes output by 

individual trees. These trees are created by bootstrap tests of the preparation information and 

by utilizing arbitrary component choice in the tree age process. It is a discrete classifier, when 

applied to a test set, it produce a single confusion matrix, which corresponds to a single point 

on a ROC curve. It is often used in a large training datasets and a very large number of 

attributes figure 2 show the algorithm steps [65]. 
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Figure2. Random forest algorithm steps 
 

2.3.2 Deep learning 

 Deep learning has arisen as a new field of machine learning since 2006 [66] ,[67], 

[68]. It is a set of machine learning algorithms which aim to learn multiple layered models of 

inputs, commonly neural networks. The deep neural networks are consists of multiple levels 

of operations as in figure 3.Deep learning have recently led to progress in classification in 

various applications in biological data, speech and natural language processing, and computer 

vision. Using the stochastic Gradient descent (SGD) updater to optimize gradient descent and 

minimizes the loss function during training. The stochastic of a learning is a form of search. 

The results of that search are recorded in the form of a weight adjustment, which reduce the 

search space move toward a position of less error. SGD is used with mini-batches, where 

parameters are updated based on the average error generated by the instances of a completed batch. 
 

                                             (4) 
 

θ is the weights change according to the gradient of the loss with respect to each theta. 

αis the learning rate. If alpha is very small, convergence on an error minimum will be slow. If 

it is very large, the model will diverge away from the error minimum, and learning will cease. 

After each iteration the gradient of the loss (L) changes quickly due to variance among 

training examples.  
 

 

 

 
 

 

 

Figure 3.Deep learning architecture 
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2.4 Evaluation of the Prediction Performance  

Standard scoring measures were used to score the method at the level of residue 

classification .In what follows, True positive (TP), true negative (TN), false positive (FP) and 

false negative (FN) are calculated for each fold. TP are the actual binding interfaces residues 

that are predicted correctly. TN are the actual non-interacting residues that are predicted 

correctly. FP are false predictions of interacting residues. FN are false predictions of non-

interacting residues. The following measures were adopted to score interface residue 

predictions: Recall (true positive rate) of the positive class [Recall (I)], defined as: 

 

           
  

       
       (5) 

 

Precision of the positive class [Precision(I)], defined as: 

               
  

       
      (6) 

 

The F1-score of the positive class [F1(I)], defined as: 

       
                          

                       
     (7) 

 

The classification accuracy [ACC], defined as: 

     
     

             
      (8) 

 

The Matthews Correlation Coefficient [MCC], defined as: 

     
              

√                                 
   (9) 

 

3. Results 
 

The classification power of the different algorithms used in this study is evaluated by 

training and testing our method on all folds. Table 2 shows detailed results of accuracy, MCC, 

Roc area, precision, recall and the mean through all the folds. This measures were employed 

in the state of the art using Naive Bayes.   
 

Table 2. Detailed results for the Naïve Bayes cross-validation 
 
 

Fold ACC MCC ROC Area   Precision   Recall    

Fold0 79.7205 0.120 0.661 0.252 0.222 

Fold1 79.7725 0.085 0.563 0.224 0.177 

Fold2 74.9915 0.064 0.570 0.240 0.185 

Fold3 80.1866 0.132 0.624 0.259 0.233 

Fold4 81.3192 0.186 0.684 0.304 0.283 

Fold5 82.2309 0.079 0.596 0.213 0.145 

Fold6 81.5935 0.172 0.672 0.260 0.296 

Fold7 81.4027 0.135 0.642 0.251 0.230 

Fold8 85.5409 0.136 0.638 0.224 0.208 

Fold9 83.7996 0.121 0.645 0.257 0.169 

Average 81.05579 0.123 0.6295 0.2484 0.2148 
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Table 3 shows the accuracy, MCC, Roc area, precision, recall and the mean in each fold 

of neural network cross validation. As can be seen, the results are consistent in all folds.  

Also, the system is more specific than sensible. Although, the deviations are low for all the 

folds with a performance balanced around 87%. 
 

Table 3. Detailed results for the neural network cross-validation 
 

Fold ACC MCC ROC Area   Precision   Recall    

Fold0 86.9313% 0.314     0.697      0.595       0.231     

Fold1 86.2957% 0.253     0.655      0.542       0.177     

Fold2 82.812% 0.245     0.693      0.557       0.181     

Fold3 87.1416% 0.283     0.686      0.626       0.174     

Fold4 88.259% 0.384     0.704      0.663       0.287     

Fold5 87.1777% 0.171     0.575      0.491       0.092     

Fold6 89.0819% 0.325     0.699      0.612       0.224     

Fold7 88.6373% 0.326     0.629      0.707       0.188     

Fold8 88.4446% 0.262     0.693      0.367       0.286     

Fold9 88.1285% 0.239     0.624      0.565       0.140     

Average 87.291 0.2802 0.6655 0.5725 0.198 

 

Finally, Table 4 presents the results of proposed stacking method between deep learning 

and random forest and without optimizing the parameters nor applying feature selection.  This 

results show that the proposed method improve the results significantly the performance 

balanced around 90 %, ROC area 0.79 and MCC 0.48. 
 

Table 4. Detailed results for the DLRF cross-validation 

Fold ACC MCC ROC Area Precision Recall 

Fold0 89.875 0.508 0.832 0.779 0.394 

Fold1 88.584 0.51 0.821 0.605 0.549 

Fold2 90.088 0.63 0.864 0.827 0.563 

Fold3 88.431 0.403 0.734 0.686 0.301 

Fold4 91.056 0.569 0.843 0.776 0.486 

Fold5 89.476 0.408 0.731 0.736 0.275 

Fold6 91.583 0.534 0.835 0.747 0.442 

Fold7 90.032 0.442 0.728 0.854 0.265 

Fold8 91.765 0.404 0.761 0.653 0.297 

Fold9 89.546 0.363 0.734 0.82 0.19 

Average 90.0436 0.4771 0.7883 0.7483 0.3762 

 

3.1 Comparison with Other Method 

The performance measures  for the proposed model and the others previously 

developed methods is rather difficult owing to the different data sets (with the exception of 

Savojardo et al. (2017) [3]), in Table 5 we present the accuracy of DL-RF  model with respect 

to other machine-learning approaches. It shows that DL-RF improves over the recently 

introduced predictors of interaction sites. This improvement is due to the fact that the input 

features are  relevant. Results in Table 5 indicate that DL-RF scores with the highest ACC, 

MCC and ROC values on both testing and blind datasets. Recall (the true positive rate) is 

lower than that of other predictors, indicating that DL-RF labels as ‘interacting’ less residues 
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than other methods, however, with a higher probability to be correct. So, DL-RF is talented 

with the highest precision and accuracy with respect to the others. Figure 4 presented a 

comparative diagram for the proposed model and others methods. Figure 5 represents the 

implementation results and the performance measure for Roc area for the proposed model. 
 

Table 5. Comparison with several state-of-the-art methods 
 

Method ACC MCC ROC  Precision Recall 

Wang et al. (2006) NA 0.28 NA 0.69 0.65 

Nguyen-Rajapakse (2006) NA 0.33 NA 0.36 0.93 

Deng et al. (2009) NA 0.35 NA 0.77 0.63 

Liu et al. (2009) 0.69 0.33 NA 0.59 0.54 

Zhang et al. (2011) 0.67 0.34 NA 0.37 0.76 

Jordan et al. (2012) 0.83 0.33 NA 0.42 0.41 

Porollo and Meller (2007) 0.72 0.28 NA 0.39 0.54 

Li et al. (2008) 0.74 0.27 NA 0.38 0.48 

Chen and Zhou (2005) 0.77 0.23 NA 0.46 0.27 

Savojardo et al. (2012) 0.47 0.16 NA 0.26 0.80 

Huang and Schroeder (2008) 0.79 0.09 NA 0.13 0.34 

Savojardo et al. (2017) 0.84 0.48 NA 0.78 0.39 

DL-RF 0.90 0.48 0.79 0.75 0.38 

 

 
 

Figure 4. Comparative diagram for the proposed model 
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Figure 5.  The implementation and performance measure for Roc area 
 

4. Conclusion 

In this paper a deep learning and random forest are used as stacking hybrid model for 

the prediction of protein-protein interactions. Accurate methods to identify PPI to discover 

protein function and identify functionally important residues on protein surfaces is crucial. In 

this paper, we present DL-RF, an improved predictor of PPI sites. As a classification method, 

DL-RF adopts a combination of Deep learning and Random forest performing a cross-

validation experiments on dataset derived from the Docking Benchmark [69] and consisting 
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of 151 high-resolution protein complexes. The obtained results demonstrates that the input 

features vector can provide useful information for the training set in order to enhance the 

quality of the classification. After DL-RF trained and tested when compared with other 

approaches, DL-R Fout-performs other methods and, become one of the best approaches for 

PPI prediction. 

As future work, this model can be used with the inclusion of an optimization method 

like PSO and apply feature selection techniques to improve the performance of the model 

together with physical-chemical characterization.  
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