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Abstract 

Energy Efficiency has become a crucial concern in modern data centers. Dynamic VM 

consolidation is one of the effective approaches endorsed to achieve energy efficiency in 

cloud data centers hosting thousands of servers. Live migration is a core feature enabling VM 

consolidation. However, live migration is a costly operation imposing energy and 

performance overhead. 

An efficient dynamic virtual machine consolidate should consider the cost due to live 

migration. In this paper, we design and implement a dynamic VM consolidation algorithm 

based on simulated annealing that accounts for the migration cost imposed by a consolidation 

plan. We conduct simulation-based experiments on CloudSim using real cloud workload 

traces from PlanetLab to evaluate the performance of the proposed algorithm. Results show 

that the using the proposed algorithm, the simulated data center consumes almost the same 

amount of energy of that using a FF based consolidation. However, the proposed algorithm 

accounts for the cost due to live migration and hence, reducing SLA violations and 

performance degradations. 

Keywords: Cloud Computing, live migration, migration overhead, dynamic consolidation, simulated 

annealing. 

 

1. Introduction  

Cloud computing has become a disruptive technology transforming businesses by 

providing infrastructure and resources as services. Energy efficiency is a crucial concern in 

cloud data centers. The amount of energy consumed by the infrastructure, including servers, 

network devices, cooling equipment and others, highly affects the cloud provider’s profit 

margin. It also has a major environmental impact due to the carbon emissions contributing to 

global warming.  

Virtual machine consolidation is one of the fundamental approaches to achieve energy 

efficiency in cloud data centers. It involves packing all available Virtual Machines (VMs) on 

an optimal number of Physical Machines (PMs). The goal is to free underutilized servers, turn 

them into sleep mode and hence, save their operational power. Servers consume 80% of their 

peak power even at 20% utilization [1]. Thus, turning a physical server into a low-power state 

mode can significantly reduce the total data center’s energy consumption.  

VM consolidation can be static or dynamic. A static VM consolidation (SVMC) 

algorithm’s inputs are: a set of all available VMs and a set of all available PMs. The output of 

a SVMC algorithm is a VM-PM assignment map defining the allocation of every VM to one 

of the given PMs. SVMC algorithms are usually useful at the beginning to generate an initial 
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placement for VMs on a set of empty PMs. However, A dynamic VM consolidation (DVMC) 

algorithm doesn’t ignore the dynamic nature of a cloud environment, in terms of changing 

VM resource demand of assigned workloads. It redistributes active VMs to achieve a certain 

objective, as energy saving or load balancing. Accordingly, the VM-PM allocation can be 

changed in response to the varying resource requirements of a VM caused by the dynamic 

workload running on that VM.  

To achieve energy saving in cloud data centers, both types of VM consolidation 

algorithms are required. A SVMC algorithm is needed at the beginning to provide an initial 

placement plan for the set of VMs on the set of available PMs. This algorithm should be 

energy-aware such that it tends to minimize the total number of active PMs. Yet, workloads 

assigned to VMs in a cloud environment are dynamic. Resource requirements vary over time 

and thus, the allocation of VMs on the servers need to be re-evaluated on periodic basis to 

check if further energy saving could be achieved through freeing some PMs. Hence, an online 

DVMC algorithm need to be running in the background providing periodic migration plans to 

keep the energy consumed by PMs at minimum through optimizing the utilization of active 

PMs. The relocation of a VM is typically accomplished through live migration operation. In 

this work, we focus on the dynamic VM consolidation problem.  

In a live migration operation, the VM is physically moved from one server to another 

while still being up and running with minimal interruption. Live migration is a core feature in 

modern data centers. However, live migration is a costly operation that requires additional 

CPU cycles at both, the source host and the destination host. According to Strunk [2], the cost 

of migration can be broadly divided into two categories; energy cost and performance cost. 

The overhead due to migration should not be ignored during dynamic VM consolidation 

decisions. A migration that will be less costly in terms of energy and performance shall be 

favored on another migration introducing higher overhead.  

Achieving energy efficiency through DVMC is an NP-Hard optimization problem. 

Exact, heuristic and metaheuristic methods have been used to solve the DVMC problem in the 

literature. However, metaheuristic approaches draw most of the research interest. This is 

because metaheuristic approaches, as Ant Colony Optimization (ACO), Artificial Bee Colony 

(ABC) and Firefly, provide near-optimal solutions in reasonable running time. 

In this paper, we address the DVMC problem using Simulated Annealing algorithm [3]; 

a metaheuristic approach for solving discrete optimization problems. 

The rest of the paper is organized as follows: In section 2, we summarize related 

research work. Then, we discuss the VM consolidation model with emphasis to formulating 

the problem, describing system architecture and we shed light on the proposed live migration 

overhead estimation model in section 3. In section 4, we propose our migration overhead-

aware simulated annealing-based DVMC algorithm. In section 5, we discuss the experiments 

and results. Finally, we give concluding remarks and outline some possible future research 

directions in section 6. 

2. Related Work 

Achieving energy efficiency through DVMC is an NP-Hard optimization problem. 

Exact methods, such as dynamic programming and linear programming, have been used in the 

literature. They provide optimal solutions for the DVMC problem. However, they are 

expensive algorithms given the typical large number of VMs and PMs in cloud environments. 
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Heuristic algorithms are problem-specific methods providing approximate near-optimal 

solutions, such as First Fit (FF) and Best Fit (BF). Unlike metaheuristic algorithms, heuristic 

algorithms are problem-specific algorithms that can provide an approximate solution to the 

NP-Hard DVMC problem. One limitation of heuristic algorithms is that they can be trapped 

in local minimum due to their greedy nature, and hence fail to provide a global optimal 

solution. Metaheuristics can take the form of evolutionary algorithms such as Ant Colony [4], 

Genetic Algorithms [5], Artificial Bee Colony [6], [7]. These approaches show promising 

results in terms of running cost and providing near optimal solutions. 

Feller et al. [4] propose the Ant Colony Optimization (ACO) algorithm to solve the 

Multidimensional bin-packing problem (MDBP) in the context of dynamic workload 

consolidation. Authors used their own java-based toolkit EnaCloud as a cloud simulation 

environment. ACO algorithm is compared to classical greedy FFD algorithm. Authors 

suggests that the workload placement is to be done initially using FFD algorithm because it 

has low computation time. And then, on periodic-basis, daily or weekly for example, the 

proposed ACO algorithm is used to optimize the placements. 

Kansal et al [8] suggest using a Firefly based optimization approach. They attempt to 

find the best VM-Host pair where through the proposed FireFly Optimization Energy-aware 

Virtual Machine Migration (FFO-EVMM) approach to maximize energy efficiency through 

the optimum number of migrations. Farahnakian et al. [9] formulate the consolidation 

problem as a multi-objective combinatorial problem addressing the three conflicting 

objectives; reducing the energy consumption, keeping the number of VM migrations minimal 

and avoiding SLA violations. Ant Colony System (ACS) is used as a meta-heuristic 

algorithm, where the amount of pheromone produced by the ants accumulate on the preferred 

migration plans. Wu et al. [5] regards the consolidation problem as a grouping problem, 

whose objective is to divide a set of VMs into a number of disjoint subsets, representing PMs. 

They propose a score function for to evaluate both; a migration cost estimation method and an 

upper bound estimation method for maximum power saving. An improved version for the 

classical grouping genetic algorithm is proposed and applied to the consolidation problem. 

Adhianto et al. [10] formulated the DVMC problem as an NP-hard, discrete 

optimization problem. They proposed an algorithm based on Ant Colony Optimization (ACO) 

metaheuristic approach to solve the problem. Mathematical models were introduced to 

estimate the energy cost due to migration, the migration overhead and SLA violation due to 

migration. The proposed algorithm is compared to other migration-aware DVMC algorithms 

and is claimed to reduce the overall power consumption by approximately 47%. 

Marzolla et al. [11] propose V-Man, a DVMC algorithm based on a simple gossiping 

protocol. The algorithm maintains an overlay network in which all the active hosts are 

organized. Every host, i.e. node, on the network can only interact with some of the network 

hosts, its neighbors. Each node periodically broadcasts messages about the number of hosted 

VMs on that node to its neighbors and receives messages about the number of VMs hosed by 

its neighbors. The node with the greater number of VMs migrates them to its neighboring 

node till the destination node reaches a predefined threshold for the maximum number of 

hosted VMs. However, this work assumes that all the hosted VMs are identical. A host 

utilization can be determined given only the number of hosted VMs. This is not valid in 

practice since VMs vary in terms of their sizes and resource demands. Moreover, the 

migration overhead is ignored. 
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Wang et al. [12] developed a VM Placement algorithm based on Particle Swarm 

Optimization (PSO). The algorithm is optimized for data-intensive workloads in National 

Cloud Data Centers (NCDC)s. Wang et al. do not assume server homogeneity. The proposed 

PSO-based algorithm is compared to the modified Best Fit Decreasing (MBFD) algorithm, 

First Fit (FF) algorithm and Best Fit (BF) algorithm. The algorithm is shown to be energy-

efficient in tree-like-topology-networked datacenters. One limitation of this work is that it 

assumes that every VM executes a single service. 

Although energy saving is the main objective for VM consolidation, most of the 

literature attempts neglect the cost of live migration. 

Rybina et al. [13] propose a mathematical model to estimate the energy cost of 

migration. This is achieved through investigating the additional power drawn by the two hosts 

participating in the migration process as well as the time duration of the process. Authors 

suggest that the VM size, available network bandwidth and the type of workload are the 

parameters contributing to the energy cost of live migration. During migration, the power 

overhead is increasing for the source and destination servers as the network bandwidth is 

increased. The type of workload executing on the migrated VM is affecting the migration 

power consumption. Migrating VM size and available network bandwidth are found to be the 

parameters contributing to the total time of migration. A large VM migrates in more time than 

a smaller VM and providing a larger network bandwidth guarantees faster migration. 

Strunk [14] similarly states that the energy overhead due to live migration varies 

according to two parameters: the RAM size of the VM to be migrated and the available 

network bandwidth. A series of experiments were carried out and the obtained data was used 

to build a model using linear regression. In this work, a mathematical model is proposed to 

estimate the energy cost of the live migration operation of a VM. The model is tested 

experimentally and is proved to achieve more than 90% estimation accuracy. A limitation of 

this work is that the developed model is only valid for idle VMs. 

Rybina [15] et al. considered five resource utilization parameters: number of last level 

cache line misses during migration, number of instructions retired, CPU utilization, ratio of 

active memory utilized by the source server to data transmission rate and number of “dirty” 

pages observed in the source server during migration. This work approaches the problem 

differently. Rybina et al. used Multiple Linear Regression (MLR) techniques to model the 

dependence of the energy consumption during migration on the five resource parameters 

under test. First, it is shown that the energy consumption is linearly dependent on each of the 

considered parameters. Then, all subset regression method is used to find the best MLR 

model. The proposed experiment shows that the CPU instructions retired ,last level cache line 

misses and “dirty” memory pages observed on the source server during migration are the 

parameters having the highest significance in the energy consumption for memory intensive 

workloads. 

3. VM Consolidation Model 

A. Problem Formulation 

A typical cloud data center hosts a number of heterogeneous PMs with varying 

configurations. The resource capabilities of each PM is represented by its CPU, bandwidth 

and RAM. A CPU can be multi-core and its performance is measured in Million Instructions 

Per Second (MIPS), the network bandwidth provided by the PM is measured in Kbit/sec and 

the RAM size is measured in MBytes. In a virtualized cloud environment, users’ workloads 
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are assigned to VMs. VMs are allocated to PMs according to the provider’s pre-defined 

allocation policy. An allocation policy should perform the VM placement on a PM with 

sufficient resource capabilities. Also, the allocation policy may optimize some objective, such 

as load balancing or power saving. However, due to the dynamic nature of cloud workloads, 

to maintain an optimal/near-optimal placement at all times, a monitoring algorithm should be 

running in the background to track the statuses of VMs and carry out migrations necessary to 

maintain optimality/near-optimality. A dynamic VM consolidation algorithm is used 

periodically to pack running VMs on an optimal number of PMs to save energy and improve 

PMs’ utilizations. 

An input to a DVMC algorithm is a PM-VM allocation map at a given time instance. 

The output shall be a new VM-PM migration plan providing a better placement in terms of 

the objective function to be optimized. The ultimate goal of a DVMC algorithm is to 

minimize the data center’s energy consumption. The total energy consumed by a data center 

after applying a given migration plan is referred to as E(MP). A given VM can be relocated to 

another PM through a live migration operation. 

The overhead due to migration is a quantified cost estimated as OM, whose estimation 

approach is discussed later in the next subsection. The optimization should be for the 

weighted product of (E and OM) for a given migration plan MP, that is, minimize the total 

energy consumed by PMs while keeping the overhead due to migration at minimum. 

Let AllPMs represent the set of available PMs. Each PM p ∈ AllPMs  has a resource 

capacity vector RC = {RC r
i}, where each element in the set represents the resource capacity 

for PM i for the resource r. The considered resources include CPU, memory and network 

bandwidth. Each VM vm ∈ AllVMs has a resource demand vector RD = { RD r
j}where each 

element in the set represents the resource demand of VM j for the resource r. The set of VMs 

hosted by PM i is given by HVMsi. The resource utilization vector for each PM P ∈ AllPMs is 

given by RU = {RU ri}, where each RUi ∈ RU represents the resource utilization of the ith PM 

for the resource r, and is calculated as the summation of resource demand of all the hosted 

VMs. 

 

The objective is to find a VM migration plan that minimizes energy consumption and 

minimizes the total migration overhead. This should be achieved without violating the PM 

resource capacity constraints. Given the above, the objective function can be formulated as: 

 

where MP is the Migration Plan binary matrix whose cells are indexed with the VM id 

and PM id. The matrix cell value specifies the VM-PM allocation status, defined as: 

 

Overhead due to Migration (OM) is calculated using the mathematical model proposed 

in the next section. The proposed objective function is subject to the following constraints: 
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The first constraint (4) ensures that the summation of resource requirements for a given 

resource for all hosted VMs do not exceed the PM’s available resource capacity. The second 

constraint (5) guarantees that a VM can be assigned to one PM. 

B. System Architecture  

  A DVMC problem can be divided into three main steps: 

1) Determining the underloaded PMs 

2) Selecting VMs on the chosen PM to be migrated out 

3) Determining the migration destination host for each VM 

First, the underloaded hosts are detected as possible candidates for consolidation. Host 

under-loading detection is usually carried out by comparing a host’s resource utilization to 

some threshold. This threshold can be fixed as proposed by Beloglazov et al. in [16], or 

dynamic as suggested by Deng et al. in [17]. When a host is selected as a possible source host 

for consolidation, VMs on that host are selected to be migrated to another host(s). Some 

approaches select one VM to be migrated at a time, based on least migration time for 

example, as proposed by Beloglazov in [18]. Finally, the set of VMs selected to be migrated 

are re-distributed among other hosts based on the destination host selection algorithm. 

In this work, we use a static threshold-based approach for detecting underloaded hosts. 

For the VM selection, an all-or-none approach is adopted. Once a host is selected as a source 

PM, all its hosted VMs are selected to be migrated out. Finally, simulated annealing is used as 

a metaheuristic algorithm for destination host selection. 

C. Live Migration Overhead Estimation  

Live migration of VMs is the backbone of dynamic VM consolidation. However, it 

doesn’t come free of charge and hence shouldn’t be carried out excessively. Given a running 

VM currently allocated to a given source host A. It is required to migrate the VM to a target 

host B, that is ready to provide the VM with its required cpu, memory and bandwidth 

resources. Pre-copy algorithm is the most widely implemented algorithm for live migration. 

The algorithm runs in several rounds. In the first round, the entire memory contents of the 

VM at the source server is copied to the destination server. Since live migration involves 

moving the VM while it is still operating, further memory pages’ modifications for the VM at 

the source host are expected to occur during the first round execution time. These modified 

memory pages are tracked. In the next rounds, memory pages are re-copied from the source 

host to the destination host, but now only for the modified memory pages. A termination 

condition will be enforced to stop those rounds, this may be a predefined threshold for the 

maximum number of rounds or a minimum threshold for the memory volume difference 

between rounds. At this stage, called stop-and-copy phase, the VM is stopped and the dirtied 

memory pages are copied for one last time. Finally, the VM’s execution is resumed on the 

target host. In this work, we attempt to quantify the live migration cost. The following factors 

are assumed to be the primary factors contributing to migration cost: 
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• Total transferred data volume 

• Total migration time 

• Migration downtime 

The total transferred data volume is defined to be the total amount of memory 

transferred during the entire migration process. Total migration time is the time taken starting 

from initiating the migration operation till the VM is resumed at the target host. Migration 

downtime is the duration of the stop-and-copy phase when the VM’s execution is stopped. 

To estimate the above factors, we define the key parameters that affect the migration 

cost factors to be: 

• VM RAM size 

• Available network bandwidth 

• Page dirtying rate 

The above parameters directly impact the factors contributing to the overhead due to 

migration. An effective parameter is the VM memory size. A vm with a larger RAM size is 

expected to take longer time to be migrated than a smaller one, given that they have same 

available network bandwidth. The available network bandwidth is inversely proportional to 

the total migration time and migration downtime. As the available network link speed 

increases, the faster a given vm can be transferred from source host to target host over the 

network. The number of rounds of a pre-copy algorithm varies according to rate at which the 

running workload attempts to modify the memory contents of the vm, defined with the page 

dirtying rate. 

We propose an algorithm for estimating the migration overhead. This is important to be 

considered in a DVMC algorithm. Many of the literature researches attempt to minimize the 

migration overhead by choosing migration plans having the least number of migrations. This 

is not always a valid assumption since VMs are usually heterogeneous in a typical cloud 

environment. Thus, a consolidation plan having a fewer number of migrations doesn’t 

necessarily cost less than another consolidation plan with a greater number of migrations. For 

example, a consolidation plan for three VMs having a small memory sizes may be less costly 

than another plan for two VMs with larger memory sizes. 

 

Table 1: Migration Overhead Estimation - Notations Summary 
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In Algorithm 1, live migration overhead estimation approach is shown. A summary of 

the used symbols is shown in Table 1. 

The overhead estimation algorithm receives the vm memory size, bandwidth and cpu 

demand as inputs. For real applications, the page dirtying rate of a given workload can be 

monitored and estimated using toolkits, as libvirt [19]. For simulation purposes, the page 

dirtying rate can be assumed to be a random percentage from the vm memory size. The 

expected outputs of the algorithm is a total estimated cost for the live migration operation. 

The pre-copy algorithm starts with migrating all the vm memory contents [line 1]. Then, for 

pre-defined number of rounds, the algorithm proceeds with re-copying the dirtied 

pages. In each round, the round duration is calculated as the quotient of the dirtied 

memory volume in the previous round and the total available bandwidth [line 4]. The 

migrated data volume of the next round is estimated to be equal to the product of the current 

round duration and the page dirtying rate. The stopping condition of the algorithm is either 

reaching a maximum threshold for the number of rounds or when the amount of migrated 

memory volume falls under a given threshold. When the maximum number of rounds is 

reached, the stop-and-copy phase [line 9 - 11] and [line 14 - 16] proceeds with the last 

iteration of dirty pages copying and then estimates the migration downtime. 

The total cost is calculated as the weighted sum of the migration cost factors. Weights 

α1 , α2 , α3 represent each factor significance in the contribution to the total cost such that: 
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4. Simulated Annealing-based DVMC Algorithm 

Simulated annealing, inspired by annealing in metallurgy, is a metaheuristic used to 

provide near-optimal solutions for global optimization problems. In metallurgy, annealing 

involves heating metals and then controllably cooling them to reduce their defects. In the 

simulated algorithmic approach, the resemblance of slow cooling is represented by the 

decreasing probability of accepting bad solutions during the exploration of the search space. 

At the beginning, i.e. at high temperature, the search space is explored and worse solutions 

may be accepted to avoid being trapped in local optima. As the temperature approaches zero, 

a simulated annealing-based algorithm is less probable to accept worse solutions and will only 

take better transitions as in a downhill/uphill greedy approach. In this work, the initial VM 

placement is performed by the First Fit (FF) heuristic. Afterwards, the migration overhead-

aware simulated annealing DVMC is used periodically in the background to dynamically 

optimize the VM-PM placement. 

 

 
 

In algorithm 2, the proposed migration overhead-aware simulated annealing DVMC 

algorithm is shown. Initially, the set of VMs selected from underutilized hosts are placed on 

the set of available PMs. Available PMs exclude over-utilized hosts and hosts previously 

turned to a low-power state. This is achieved using a heuristic algorithm which is first fit 

algorithm in our case [Line 1]. Simulated annealing based approach starts in line 4 and 

continues till the temperature reaches 0. In each iteration, the objective function value for the 

current migration map, i.e. the energy of the solution, is calculated [line 5] as Ecurr. Then, a 

neighboring migration map MMneigh is obtained through GetNeighbor function. The energy of 

the new migration map is computed [Line 7] and compared with the current migration map. If 

the neighboring solution provides a better solution, i.e. less energy then the new solution is 
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accepted. Otherwise, the probability of acceptance is computed using Metropolis Criterion 

[20] that varies according to the temperature. At high temperatures, i.e. early iterations, the 

acceptance probability evaluates to a large value, implying that it is likely to accept new 

solutions even if they are not good enough (exploration phase). At low temperatures, the 

acceptance probability evaluates to small values and it is more likely to reject bad solutions 

(exploitation phase). MMbest and Ebest keep track of the migration map providing the least 

objective function value and its corresponding objective function value respectively [lines 15 

- 16]. It is important to reduce temperature at slow rate to ensure convergence to global 

optimum. Temperature is reduced by 0.01 for every iteration in our experiments. 

Neighbor Function Neighbor function is a method adding the sense of randomness to 

this simulated annealing-based approach. The function simply chooses a number of VMs 

from the given migration map at random and assigns them to other random PMs. The 

overloaded, switched off and PMs Underutilized hosts that are currently being consolidated 

are excluded from the list of possible destination PM candidates. The number of VMs to be 

shuffled is fixed and whose value is best determined through empirical experiments. 
 

5. Experiments and Results 

Conducting large-scale experiments on real environments repeatably is very expensive. 

Thereby, experiments are conducted by using Cloudsim [21]. Cloudsim is an open-source 

cloud infrastructure simulation environment written in Java. We extended cloudsim for the 

implementation and evaluation of the proposed algorithm. Workload data are obtained from 

real cloud traces from CoMon project, a monitoring infrastructure for PlanetLab [22]. A 

workload file of a given day contain data of CPU usage of thousands of VMs collected every 

five minutes on this day. In this section, we introduce migration overhead-aware simulated 

annealing based DVMC algorithm experiments and results. Xen is used as the hypervisor. 

Experiments are carried out offline on a Lenovo workstation (Intel Core i7 2.5 GHz CPU (4 

cores), 16 GB of RAM and 2 TB storage). The number of created VMs is double the number 

of PMs. There are 3 VM categories according to their RAM size; Large-sized VMs (4 GB), 

Medium-sized VMs (2 GB) and Small-sized VMs (500 MB). All VMs having single-core 

1000 MIPS CPU, 100 GB of storage and 1GBit/sec of network bandwidth. The power 

consumed by a host is computed based on a Linear model according to its CPU utilization 

given by equation 7. 

 

where Pmax is the maximum power consumed by the host, Pidle is the power consumed 

by the host when in an idle state. Pmax and Pidle are fixed during the experiments. 

The experiment’s objective is to assess the quality of the VM consolidation decisions 

for each of Best Fit (BF), First Fit (FF), Worst Fit (WF) and Simulated Annealing-based 

algorithms. 
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Table 2: Experiments Details 
 

Experiment # # PMs #VMs Workload 

Exp 1 50 100 20110322 

Exp 2 100 200 

Exp 3 200 400 

Exp 4 400 800 

Exp 5 800 1600 20110303 

Exp 6 1600 3200 

Exp 7 3200 6400 

Exp 8 6400 12800 

The total data center power consumption during a full-day simulation is the metric 

proposed as an indicator for energy consumption. It is worth mentioning that the total power 

consumption of a data center includes the power consumed by servers, storage units, cooling 

and network equipment. For simplicity, we only focus on the power consumed by servers in 

this work. Eight experiments were conducted with varying the number of running PMs. 

Experiments are repeated twice running two different workload files of PlanetLab featuring 

two days. Details are shown in Table 2. 

In figure 1 we show the total power consumption for March 3rd and 22nd from CoMon 

workloads for each of the compared algorithms with increasing the number of PMs. Worst Fit 

achieves the least power saving followed by Best Fit, Overhead-aware Simulated Annealing 

then First Fit. 

In figure 2, the number of released PMs are shown with increasing the number of PMs. 

Overhead-aware SADVMC, Best Fit and First Fit provide very close results and hence, the 

curve representing their number of released PMs are overlapping. 

Results show that first fit consolidation approach outperforms best fit, worst fit and our 

proposed simulated annealing approach in terms of amount of power saved and number of 

released PMs. Being migration overhead-unaware, first fit performs consolidation regardless 

current VM-PM placement and hence saves more power and frees up more PMs. However, 

our proposed overhead-aware simulated annealing approach performs consolidation with 

consideration to the current VM placement and the imposed cost due to migration. This 

introduces higher computation time compared to the other algorithms. Computation time 

greatly rises with the increase of the cluster size being consolidated. 
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6. Conclusion and Future Work 

In this research, we proposed an algorithm for dynamic virtual machine consolidation 

based on simulated annealing. The devised algorithm accounts for the overhead due to live 

migration based on a proposed estimation model. The algorithm has two objectives: 

minimizing the total data center energy consumption and minimizing the total migration 

overhead. We conducted experiments comparing our migration overhead-aware simulated 

annealing-based algorithm to several heuristic algorithms: best fit, worst fit and first fit. From 

the perspective of the total amount of saved power, SADVMC provided results close to first 

fit algorithm. However, the difference is first fit does not consider migration overhead and 

only performs bin-packing for VM instances onto available PMs. From the computation time 

point of view, the time elapsed to consolidate PMs rises exponentially with increasing PMs 

size and is around double that of First Fit. 

In the future, we plan to integrate the migration cost estimation model with other 

DVMC algorithms and inspect the results. The migration cost estimation model can also be 

flexible to handle different cost aspects. In the future, we intend to consider the affinity of a 

VM to other related VMs before migration as part of the migration cost. Sometimes multiple 

VMs have dependencies and their physical proximity highly affect their performance. 

Moreover, it has been noticed that SLA violations may arise from aggressive consolidation. 

Hence, we intend to propose different consolidation operation modes providing a trade off 

between the amount of energy preserved and posed SLA-violations. 
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