
Egyptian Computer Science Journal Vol. 42 No.4 September 2018 ISSN-1110-2586

-89-

Formal Foundation, Approach, and Smart Tool for Software Models’

Comparison

1Olena V. Chebanyuk, 2Abdel-Badeeh M. Salem

1Software Engineering Department, National Aviation University,

Kyiv, Ukraine

2Computer Science, Faculty of Computer and Information Sciences,

 Ain Shams University, Cairo, Egypt

chebanyuk.elena@ithea.org, abmsalem@yahoo.com

Abstract

Software models’ comparison is an operation performed in all software development

lifecycle processes. Comparison is one of the steps of software models refactoring,

refinement, merging, quality estimation, etc. Such operations take place in different tasks in

requirement analysis, software designing, testing, reengineering, etc.

This article proposes analytical foundations for software models’ representation and

corresponding technique for their comparison. To describe software model structure it is

proposed to use graph representation. Software models’ comparison technique based on sub-

graphs matching is proposed. Following this technique important steps of software tool

realization are described, namely, (i) grounding of the choice of development environment

and tools for XMI files processing; (ii) the algorithm for extracting software model structure

from XMI file; (iii) software models’ comparison algorithm realization; (iv) description of

software architecture. Peculiarity of proposed software tool is a possibility for visualizing

elements of two software models that do not match each other directly in modeling

environment. Data are extracted from XMI files by means of LINQ queries. After that they

are stored in graph triples. To perform visualization, it is proposed to modify “*.layout” files,

designed by Microsoft Visual Studio environment. Other important feature of the tool is a

possibility to compare software models, designed in different modeling environments. It is

done by means of involving new LINQ queries, considering specifics of storing software

models in different modeling environments.

Paper contains case study, explaining the process of software models’analytical

representation, and comparison technique implementation.

Keywords: Agile, Graph Theory,FormalMethods of Software Engineering, LINQ,Software

Model, SoftwareModel Formal Representation, XMI, XML, UML Diagram, Use

Case Diagram.

1. Introduction

Software models are central development artifacts in Model-Driven Development

approach. Often they are represented as UML diagrams. Many operations in different

software development life cycle processes include such tasks as software model merging,

transformation, refactoring, and refinement [5],[25],[26]. Software model comparison is an

important step for effective processing of all these operations.

Egyptian Computer Science Journal Vol. 42 No.4 September 2018 ISSN-1110-2586

-90-

Consider requirement analysis software development life cycle process[9]). It consists

from such operations as requirement verification, validation, tracing, and refinement.

Verification needs comparison of designed requirements with some etalon (for example UML

diagrams illustrating problem domain processes) to prove that the requirement specification is

represented correctly. Validation also contains some comparison to decide whether system

requirements are designed in a proper way. We need to compare different requirements in a

requirement list to avoid duplication or establish trace links, etc.[9]).

Consider such software development life cycle process as designing(ISO/IEC/IEEE

42010:2011(E)). It consists from such operations as designing of high level architectural

solutions (often represented by means of package diagrams), middle level, and structural

representation for concrete components. Comparison operation is performed when class

diagrams are estimated in accordance to some etalon structures. In software architecture such

structures are design patterns, architectural patterns, anti-patterns, and SOLID principles[15].

Also many other operations from other software development lifecycle processes are

based on software models comparison.

2. Related Papers

Model comparison is a central operation in all software models processing operations.

There are many scientific papers taking strong contribution in this process. Researches, which

consider development of software model comparison approach, are developed in several

directions. One of them is processing of UML diagrams text representation. Other papers are

directed to development analytical approaches for software model comparison and

representation. Consider both of them.

More detailed description of two software models comparison that are stored in XML

files is proposed in paper [23]. Authors describe algorithm of two XML files comparison in

details considering the fact that software model is stored in XML file as a tree.

Authors of paper [23] propose use DOM specification and consider XML file as no

ordered DOM tree. Structures of XML files are compared by means of collaboration of some

operations (mostly Insert () and Delete ()) for processing different tree parts. To speed up the

comparison process hashing operations are used. If hash meanings are different, than more

precise operations for comparison XML files fragments are used. Authors propose detailed

analysis of described algorithms effectiveness. But results of two XML files comparison are

visualized in plain text. It is not convenient for UML diagram analysis. User should (i)

analyze text representation of XML files fragments, (ii) define UML diagram elements that

match to this fragments, (iii) compare UML diagram in mind, and use this information for

further UML diagrams processing.

Key questions for software model comparison are described in paper [24]. But authors

propose just short recommendations related to model comparison process. Software models,

represented as UML diagrams, are stored in XML files. Authors propose use composition of

methods for XML files processing for analyzing of XML file internal structure.

But many questions still remains open after reading the paper [24]. For example what

are steps of algorithms to compare software model.

Paper [11] discussed the requirements for model comparison, composition, and model

transformation testing. A prerequisite of composition is the identification of common

elements contained in the two sources so that the merged artifact does not contain duplicated

Egyptian Computer Science Journal Vol. 42 No.4 September 2018 ISSN-1110-2586

-91-

information. A rule-based approach for performing automated comparison on diverse models

is presented.

Authors [11] consider model comparison as an operation that divide elements into

several types, namely: (1) Elements that match and conform, (2) Elements that match and do

not conform, (3) Elements that do not match and are within the domain of comparison, and

(4) Elements that do not match and are not within the domain of comparison. Matching refers

to elements that represent the same idea or artifact, while conformance is additional matching

criteria. An example of non conformance in an UML class diagram can be when a class in

both models has the same name but one is abstract. So while they likely represent the same

artifact, they do ’match enough’ or conform to one another [11]. This paper centrally touches

deep foundations in mechanism of comparison operations performing. Questions that require

more precise recognition of links between model objects need modifying of comparison

technique.

In the context of model versioning, in [3] model comparison is decomposed into three

phases: Calculation, Representation, and Visualization. However, there is nothing about this

decomposition that is specific to model versioning. In the following paragraphs authors

elaborate on these phases and provide examples of approaches.

Paper [13] proposes model comparison as preliminary step for performing model

versioning, merging, and cloning. Survey summaries software models comparison techniques

considering papers [1], [2], [12], [19], [3] and others.

Some papers develop approaches to process textual representation of software models.

Authors [1],[2] use the same comparison stages as [11], but model comparison is based

on UML’s universally unique identifiers (UUID). During comparison unique elements in two

models are determined and added to two separate lists.

Authors [3] propose a survey about software tools for model comparison. Survey

describes list of papers that are devoted software model comparison plug-ins (mostly based on

Eclipse platform) and software products (for example IBM Rational Software Architect

(RSA) [12]). As in IBM RSA, software model comparison serves for model history managing

user may compare parts of software models implementing approach proposed in [12].

Other considered techniques for software model comparison use software model graph

representation. But comparison is also based on UUIDs processing or introducing some rules

for matching software model parts [19]. Some rules designed for structural software models

propose top down comparison, matching links defined in MOF standard, comparing

structures, detected on meta-level. Software tools designed following this approach are

EMFCompare [3], TopCased [8], SmoVer [18], UMLDiff [21] and many others.

To compare behavioral software models, they are represented as graphs or trees. Then

different matching algorithms are used. There are different scan algorithms (eScan and aScan)

[17]. Comparing fragments of graph structures leads to more precise results of matching

software model fragments. Experiments concern sequence diagrams and state chart ones.

There are attempts to develop comparison algorithms considering language semantic [14].

Authors (Soto and Munch, 2006) propose an algorithm Delta-P using Resource Description

Framework (RDF) for software model representation and its further comparison.

Egyptian Computer Science Journal Vol. 42 No.4 September 2018 ISSN-1110-2586

-92-

Represented researches are interconnected with concrete modeling environment (plug-

ins for concrete software tools) or propose comparison results in text view. Text

representation of differences in software models contain some tips for estimation of software

model similarities but can’t speed up process of software model analysis. These cases make

difficult reusing of designed techniques in approach consist from full set of comparison

operations starting from analysis of software models designed in different modeling

environments and finishing by visualization of these differences in modeling environment.

This idea is repeated by authors of survey [13]. “There is still much room for maturity

in model comparison and it is an important area that must be in the minds of MDE supporters,

as it has many benefits and is widely-applicable”. Thus, that task of design an approach for

comparison of software model created in different modeling environments is actual.

3. Task and Challenges

Task: Propose an algorithm and software tool for comparison software models of the

same type. Software models may be designed in different modeling environments, namely

Papyrus and Microsoft Visual Studio.

 Ground the choice of analytical foundation for software model representation to obtain

precise comparison results. This foundation should satisfy the next challenges:

− to support description of software model structure considering all its details;

− to provide using of simple logical operations for performing comparison operation;

− to obtain comparison results with high precision.

Ground the choice of software modeling environment for visualization of comparison

results. Such software modeling environment should satisfy the next challenges:

− to support application lifecycle management (software modeling, coding, collaboration

between stakeholders, etc.).

− to support stack of technologies:

 for processing of XMI files, in which software model and information about its

elements placement are stored;

 for realization of proposed foundations for software models’ comparison;

 for setting custom visualization features of software models (custom representation

for software model objects, possibility to set up custom coloring schemas for

software model links and objects).

4. Proposed Approach

Proposed approach is described in the two next points, namely software model

representation and software models’ comparison technique.

4.1 Software model representation

Main definitions and denotations related to software model representation are described

in the Table 1.

Graph representation of software model is not newapproach. It allows choosing

necessary software model part for further processing in a flexible manner. In case of

performing comparison operation, several elementary sub-graphs (directly linked or not) can

be selected. (Definition of sub-graph is represented in the Table 1).

Egyptian Computer Science Journal Vol. 42 No.4 September 2018 ISSN-1110-2586

-93-

Table 1. Main definitions and analytical representation aimed to perform software

model comparison operation

Concept Explanation and analytical representation of concept

Software model According to standard UML 2.5 Software Model (SM) is a UML

diagram.

Denote software model as SM and SM of some type as
typeSM

where type=use case, type=class, ect.

Software model

representation

Graph representation [6] is chosen.

(,)type typeSM O L= (1)

where
typeO – a set of software model objects that are used in

typeSM

notation.
.

Objects are elements of software model notations that can be

expressed as graph vertexes.

typeL – a set of software model links that are used in
typeSM notation

. Links are elements of software model notation that can be expressed

as graph edges.

Elementary sub-

graph

Part of graph, consisting of two linked vertexes. Denote elementary

sub-graph as:
),,(21 oloe = (2)

where Ooo 21, are software model objects linked by link Ll .

Set of

elementary

 sub-graphs

All sub-graphs of software model that contain all its objects and links.

||},,...,,{ 21 EneeeE n == (3)

4.2 Software models’ comparison technique

This technique is considered for two software models.

1. The first software model is represented as a set of elementary sub-graphs (3). Denote

this set as
||},,...,,{ 1,12,11,11 EneeeE n ==

2. The second software model is represented as a set of elementary sub-graphs too. Denote

this set as
||},,...,,{ 2,22,21,22 EmeeeE m ==

3. The first elementary sub-graph
11,1 Ee  is compared with all elementary sub-graphs

||,...,1, 22,2 EjEe j = .

If |}|,...,1{, 2,21,1 Einjee
j

= then these two elementary sub-graphs are deleted from the

sets 1E and 2E .

Two elementary sub-graphs),,(2111 oloe = and),,(4232 oloe = are considered equal if the

next three conditions are satisfied:

―
1o and

3o are the same objects;

―
2o and

4o are the same objects;

―
1l and

2l are links of the same type.

Egyptian Computer Science Journal Vol. 42 No.4 September 2018 ISSN-1110-2586

-94-

4. Previous point is repeated for the all elementary sub-graphs of the set 1E .

5. As a result, the unique elementary sub-graphs remain in the sets 1E and 2E .

5. Development of Software Models’ Comparison Tool

In order to meet challenges to software models’ comparison tool it is necessary to

perform the next tasks:

― Ground the choice of development environment and tools for XMI files processing;

― Propose the algorithm for extracting software model structure from XMI file;

― Develop of software model comparison algorithm;

― Design software architecture.

5.1 Grounding the choice of development environment and tools for XMI files processing

Many environments store UML diagrams in XMI (XML Metadata Interchange) format.

This standard is adopted by OMG for serializing and exchanging UML and MOF models. But

different modeling environments adopt it with peculiarities and there is no possibility to use

the same compiled plug-ins or tools to process (compare, merge, or perform other operation)

software models designed in different modeling environments.

It defines the actuality of task: to design own software tool for software models’

comparison.

There are several techniques for XMI filetext representation analysis [22]. Regular

expression (Regex) engine provides a special notation for finding necessary elements in text.

However, Regex is not convenient tool to extract information from the text with strict and

specific structure as the XML one. Other downsides are: low level of extensibility,

readability, and therefore increased cost of maintenance.

The other solution is a “Language INtegrated Queries” (LINQ) featured in .NET

platform: LINQ queries allow easy manipulation of XML documents via elements of

functional programming like Lambda expressions. Syntax of LINQ queries matches

predicates expressions structure.

Therefore, to process software model LINQ technology is chosen. This decision defines

the overall technological stack of the project - the cross-platform and open source .NET Core

Framework.

Being based on a cross-platform technology, application of plug-in for UML diagram

verification may be used in many different ways and embedded into various different

applications and systems. Therefore, the core functionality should be implemented as a

portable library in a .NET Standard format. It provides a full-featured transformation and

analysis of Application Program Interface (API) for any types of applications: desktop, web,

and command-line. Web application allows users to easily analyze diagrams and manage the

output of results.

These technologies are built into Microsoft Visual Studio that is an Application

Lifecycle Management environment supporting team development by means of using Team

Foundation Server.

Egyptian Computer Science Journal Vol. 42 No.4 September 2018 ISSN-1110-2586

-95-

5.2 Algorithm for extracting software model structure from XMI file

In order to convert an XML file into a set of elementary sub-graphs the next technique

is applied:

1. Determine the modeling environment in which software model was designed. Supported

modeling environments are Microsoft Visual Studio and Papyrus modeling

environment[16].

2. Determine UML diagram type.

3. Apply special LINQ queries to extract all UML diagram entities when UML diagram is

designed in determined modeling environment.

4. Apply special LINQ queries to extract all UML diagram connections between these

entities.

5. Compose extracted UML diagram entities and connections between them into set of

elementary sub-graphs.

The sequence diagram for algorithm of extracting information from XMI file is

represented in the figure 1.

Figure 1. Sequence diagram for text representation of software model

Figure is taken from [27]

Egyptian Computer Science Journal Vol. 42 No.4 September 2018 ISSN-1110-2586

-96-

5.3 Development of software models’ comparison algorithm.

Software models’ comparison algorithm based on proposed technique consists of the

next steps:

1. Prove that two software models are the same type.

2. Prove that at least one of the software models is designed in Microsoft Visual Studio. The

other software model can be designed in any of Papyrus modeling environment or

Microsoft Visual Studio.

3. Form the set of elementary sub-graphs from the first software model.

4. Form the set of elementary sub-graphs fromthe second software model.

5. Compare two sets of elementary sub-graphs according to software model comparison

technique.

6. Modify Microsoft Visual Studio “*.layout” file by storing information about software

models’ differences using custom objects representation or different coloring schemas for

UML model links.

7. Open modified UML diagram in Microsoft Visual Studio to watch and analyze comparing

results.

UML
diagram1

UML
diagram2

sub-
graph1

sub-
graph2USER

loop
Compare sub-graphs

Verify type of the
UML diagram1

Verify type of the
UML diagram2

Obtain the array of sub-graphs

Obtain the array of sub-graphs

Figure 2. Sequence diagram for text representation of software model

5.4 Designing software architecture for realization of software models’ comparison

technique

Software architecture of models’ comparison tool is represented on the Figure 3.

Package “UML_models” stores information about software models. For performing

comparison operation, software model is represented as a set of elementary sub-graphs. Class

“UML_diagram” storesinformation about model in a List of elementary sub-graphs. In

Egyptian Computer Science Journal Vol. 42 No.4 September 2018 ISSN-1110-2586

-97-

constructor of class “UML_diagram”, list of elementary sub-graphs by means of LINQ

queries are formed.These LINQ queries are stored in the classes

“Parse_Use_Case_Visual_Studio”and “Parse_Use_Case_Papyrus”. In order to satisfy Liskov

Substitution SOLID design principle [15], class “UML_diagram” does not link directly with

these classes. The interconnection is performed through base class “ParseUML” that has

virtual methods “ConstructSub_Graphs()”,”GetConnectors()”, and ”GetObjects()”. These

operations are universal for processing of UML diagrams of any type. But concrete LINQ

query will be placed in the class inheritor in order to satisfy Open-Closed SOLID design

principle[15]. Package “Compare” contains class “SM_Compare”that performs comparison

operation for two software models. Comparison operation is performed in the constructor of

the class “SM_Compare”. This constructor takes two UML models as input parameters and

forms two lists of elementary sub-graphs that are unique for the first and seconds software

models. Class “Visual” stores changes to “*.layout” file of UML diagram.

Proposed architecture is extensible. In order to add new types of UML diagrams,

theenumerations “Graph_Objects” and “Graph_Links” are completed by new elements.

Then,new classes with specific LINQ queries are inherited from “ParseUML” class.

Figure 3: Software architecture of model comparison tool

6. Case Study

Consider two use-case diagrams that are obtained after two SCRUM-meetings (Figure 4).

Egyptian Computer Science Journal Vol. 42 No.4 September 2018 ISSN-1110-2586

-98-

a) b)

Figure 4 Examples of Use Cases obtained in two different scrum iterations

The first Use Case (Figure 4.a) was obtained in the previous software development

iteration. The second one (Figure 4.b) is obtained after scrum meeting in the current software

development iteration. Use Cases on the figure 4 are designed using template represented by

reference http://www.uml-diagrams.org/examples/online-shopping-credit-cards-use-cases-

example.html

Compare these two Use Case diagrams.

1. Form sets 1E and 2E from the first and second use case diagrams (Table 2). Note: the use

case “Autorize and Autotentificate” (Figure 2) further is denoted as “autoR&autoID”.

Table 2 Use Case diagrams analytical representation

Analytical representation of the set 1E Analytical representation of the set 2E

, , &1,1 1 1,2 2

, ,1,3 3 1,4 4

, ,51,5 1,6 6

,1,7 1

,1,8 2

(,); (,);

(,); (,);

(,); (,);

(& ,);

(& ,);

auto autoR autoID

capture credit

void verify

auto

cap

e user l e user l

e user l e user l

e user l e user l

e autoR autoID li rize

e autoR autoID li ture

= =

= =

= =

=

=

71,9 1,10 10

, ,1,11 11 1,12 13

1,13 14 1,14 8

, ,1,15 9 1,16 10

(, ,); (, ,);

(, ,); ();

(, ,); (, ,);

(, ,); ().

void cccb

void mb

e autorize l cccb e capture l cccb

e credit l cccb e l

e verify l cccb e capture l mb

e credit l mb e l

= =

= =

= =

= =

, & ,2,1 1 2,2 2

, ,2,3 3 2,4 4

,2,5 1

52,6

2,7 8

2,8 6

(,); (,);

(,); (,);

(& ,);

(& , ,);

(& , ,);

(, ,);

autoR autoID credit

void verify

auto

e user l e user l

e user l e user l

e autoR autoID li rize

e autoR autoID l mb

e autoR autoID l cccb

e credit l mb e

= =

= =

=

=

=

=
2.9 9

, ,72,10 2,11 10

, ,2,12 11

(, ,);

(, ,); ();

().

void cccb

verify cccb

credit l cccb

e void l mb e l

e l

=

= =

=

http://www.uml-diagrams.org/examples/online-shopping-credit-cards-use-cases-example.html
http://www.uml-diagrams.org/examples/online-shopping-credit-cards-use-cases-example.html

Egyptian Computer Science Journal Vol. 42 No.4 September 2018 ISSN-1110-2586

-99-

Perform comparison operation as it is described in the point “Software models’ comparison

technique” by means of deleting the same elementary sub-graphs from two sets 1E and 2E .In

analytical representation deleting of the elementary sub-graphs will cause in the case logical operation

“and” with one elementary sub-graph from the one setgets “one” with any elementary sub-graph from

the other set. Other words the same elementary sub-graphs from different sets are deleted. Elementary

sub-graphs considered equal in case names and types of objects and links are the same. Visual

interpretation of deleting is shown in the figure 5.

Figure 5Visualizing of analytical process of deleting the same elementary sub-graphs

3. Those elementary sub-graphs that are unique for 1E and 2E remain in the lists of elementary

sub-graphs (Table 3).

Table 3 Unique elementary sub-graphs of two Use Case diagrams

Unique elementary sub-graphs of 1E Unique elementary sub-graphs of 2E

,1,1 1

,1,3 3

71,9

1,10 10

1,12 11

((,));

(,);

(, ,);

(, ,);

(, ,).

auto

capture

e user l rize

e user l

e autorize l cccb

e capture l cccb

e capture l mb

=

=

=

=

=

52,6

2,7 8

(& , ,);

(& , ,).

e autoR autoID l mb

e autoR autoID l сссb

=

=

4. Visualization of Use case diagrams difference is represented at the Figure 5. Unique parts

of the first use case diagram are marked as blue, the seconds use case diagram respectively

green. Notice hat results of analytical comparison (Table 3) and software tool working

(Figure 6) are the same

Egyptian Computer Science Journal Vol. 42 No.4 September 2018 ISSN-1110-2586

-100-

7. Conclusion

Solution proposed in this paper integrates both analytical foundations of software model

representation and comparison as well as software tool designed to implement proposed

approach.

To describe software model graph representation (1)-(3) is used [6]. Such representation

allows (i) considering all details of software model; (ii) providing simple logical operations

for elementary sub-graph comparison; (iii) obtaining comparison results with high precision.

Then approach for software model comparison by means of elementary sub-graph

analysis of two different software models is represented. It is based on performing sequence

of operations for elementary sub-graphs matching.

Software tool supports the next features: (i) restores information of software models’

elementary sub-graphs, designed in Papyrus of Microsoft Visual Studio; (ii) performs

software models’ comparison; (iii) provide visual representation of non-matching elements in

both software models in Microsoft Visual Studio.

Visualization algorithm modifies “*.layout” file of UML diagram in Microsoft Visual

Studio. Modification means reaching UML diagram by specific denotations, for example

adding custom pictures for drawing software model objects or color schemas for marking

different UML diagrams elements (Figure 3).

Using this tool simplifies the process of analyzing software models in comparison with

approaches that represent only textual description of UML diagrams’ differences in plain text

[1], [2],[3],or in analytical expressions. Proposed tool will speed up performing many

operations in requirement analysis, software designing, testing, and reengineering software

development life cycle processes.

.

Figure 6Visualization of software model comparison technique results

Egyptian Computer Science Journal Vol. 42 No.4 September 2018 ISSN-1110-2586

-101-

Grounding the choice of software technologies stack, used in software tool, is

represented. Concluding: (i) LINQ queries for processing software model XMI files are used;

(ii) software tool using Microsoft Visual Studio for models creation, storing, implementing

comparison technique, and visualizing of comparison result, is designed, (iii) .Net Core, as

target cross-platform technology supporting cross-platform compilation, is chosen.

8. Further Research

Modify proposed approach and software tool for comparing software models of

different types that have common elements in their notations (For example notations of Use

Case, Communication, and Sequence diagrams contain “Actors”). Develop visualization

technique to consider differences in more than two software models allowing user to consider

whether to see whole UML diagram or some parts of it, according to history of changing,

considering limitations discussed in paper [4]. Develop a software tool based on proposed

visualization technique for software model versioning.

References

[1]. Alanen, M. and Porres, I. (2003). Difference and union of models. In UML, pages 2–17.

[2]. Alanen, M.and Porres, I. (2005).Version control of software models. Advances in UML

and XML-Based Software Evolution, pages 47–70.

[3]. Brun, C.and Pierantonio, A. (2008). Model differences in the Eclipse modelling

framework. The European Journal for the Informatics Professional, pages 29–34.

[4]. Chebanyuk E., Markov K., 2015. Software model cognitive value. International Journal

“Information Theories and Applications”, Vol. 22, Number 4, ITHEA 2015, p. 338-356.

http://www.foibg.com/ijita/vol22/ijita22-04-p04.pdf

[5]. Chebanyuk E., Markov K., 2016. Model of problem domain “Model-driven architecture

formal methods and approaches” International Journal “Information Content and

Processing”, Vol. 22, Number 4, ITHEA 2016, p.202-222.

http://www.foibg.com/ijicp/vol03/ijicp03-03-p01.pdf

[6]. Chomsky, N. 1957. The book. Syntactic Structures. Mouton publishers, Eilenberg:

Mac Lane The, Hague, 1945 - 1957. ISBN 90 279 3385 5. p.107.

[7]. Control in Model Driven Software Development. OOPSLA/GPCE: Best Practices for

Model-Driven Software Development

[8]. Farail, P., Gaufillet, P., Canals,A., LeCamus, C., Sciamma, D., Michel, P., Cregut, X.,

and Pantel, M. (2006). The top cased project: a toolkit in open source for critical

aeronautic systems design. ERTS, pages1–8, electronic.

[9]. ISO/IEC 12207:2008(E) Systems and software engineering — Software life cycle

processes

[10]. ISO/IEC/IEEE 42010:2011(E)Systems and software engineering — Architecture

description http://cabibbo.dia.uniroma3.it/asw/altrui/iso-iec-ieee-42010-2011.pdf

[11]. Kolovos, D., Paige, R., and Polack, F. (2006). Model comparison: a foundation for

model composition and model transformation testing. In IWGIMM, pages 13–20.

[12]. Letkeman, K. (2007). Comparing and merging UML models in IBM Rational Software

Architect: Part 7. http://www.ibm.com/developerworks/rational/library/07/0410letkeman/

Egyptian Computer Science Journal Vol. 42 No.4 September 2018 ISSN-1110-2586

-102-

[13]. Matthew S. and Cordy J. (2013). A Survey of Model Comparison Approaches and

Applications. In Proceedings of the 1st International Conference on Model-Driven

Engineering and Software Development (MODELSWARD-2013), pages 265-277

ISBN: 978-989-8565-42- DOI: 10.5220/0004311102650277

[14]. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., and Zave, P.(2007). Matching

and merging of state charts specifications. In ICSE, pages 54–64.

[15]. Ocampo, (2009) Joe Ocampo, Jason Meridth, Chad Myers, Sean Chambers, Ray

Houston, Jimmy Bogard, Gabriel Schenker, and Derick Bailey, Pablo’s solid software

development, 2009 e-book access mode : https://lostechies.com/wp-

content/uploads/2011/03/pablos_solid_ebook.pdf

[16]. Papyrus, (2012) Papyrus, 2012. Available from World Web:www.papyrusuml.org.

Unified Modeling Language (UML), 2012.

[17]. Pham, N., Nguyen, H., Nguyen,T., Al-Kofahi, J., and Nguyen, T.(2009). Complete and

accurate clone detection in graph-based models. In ICSE, pages 276–286.

[18]. Reiter, T., Altmanninger, K., Bergmayr, A., Schwinger, W.,and Kotsis, G. (2007).

Models in conflict-detection of semantic conflict sinmodel-based development. In

MDEIS, pages29–40.

[19]. Selonen, P. and Kettunen, M. (2007). Metamodel-based inference of inter-model

correspondence. In ECSMR, pages 71–80.

[20]. Soto, M. and Munch, J. (2006). Process model difference analysis for supporting

process evolution. Software Process Improvement, pages 123–134.

[21]. Xing, Z. and Stroulia, E. (2005). UML Diff: an algorithm for object-oriented design

differencing. In ASE, pages 54–65.

[22]. XMI, 2015 XML Metadata Interchange http:// www.omg.org/spec/XMI/2.5.1/

[23]. Yuan Wang, David J. DeWitt, Jin-Yi Cai. X-Diff: An Effective Change Detection

Algorithm for XML Documents. In: Proceedings 19th International Conference on

Data Engineering, Bangalore, India, India 5-8 March, 2003 Page(s):519 - 530

http://pages.cs.wisc.edu/~yuanwang/papers/xdiff.pdf DOI 10.1109/ICDE.2003.1260818

[24]. Yuehua Lin , Jing Zhang , Jeff Gray Model comparison: A key challenge for

transformation testing and version control in model driven software development (2004)

[25]. El-Licy, F. A. (2016). Paired Scrum for Large Projects. Egyptian Computer Science

Journal (ISSN-1110-2586), 40(1).

[26]. Sanaa, H., Afifi, W. A., & Darwish, N. R. (2016). The Goal Questions Metrics for Agile

Business Intelligence. Egyptian Computer Science Journal, 40(2).

[27]. Chebanyuk O., Mironov Yu.(2017) An approach of obtaining initial informationfor

software models analysis. International journal. Informationalcontent and processing.

Vol. 4, number 2, p.114-143

https://lostechies.com/wp-content/uploads/2011/03/pablos_solid_ebook.pdf
https://lostechies.com/wp-content/uploads/2011/03/pablos_solid_ebook.pdf
http://pages.cs.wisc.edu/~yuanwang/papers/xdiff.pdf

