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Abstract 

Many studies have been proposed to analyze gene expression microarray data, 

emphasizing on the identification of genes that show related functions over only subsets of 

different conditions. Detection of these homogenous genes is a crucial step in this analysis. 

One of the main approaches to achieve this task is biclustering, which is a time-consuming 

process that starts with the identifying sets of genes as seeds, expanding theses seeds using 

heuristic searches along with a measure of coherency to assess the quality of the resulting 

biclusters. The identification of the suitable coherency measure is a critical task, not only 

affecting the expansion of initial seed biclusters, but also the final shape of them. In this 

paper, a number of bicluster coherency measures for gene expression data are reviewed and 

analyzed from both analytical and mathematical aspects to help researchers in the choice of 

the right measure.  

Keywords: Clustering, Biclustering, Microarrays, Gene Expression Profiles, Coherency 

Measures, Correlated Patterns. 

1. Introduction 

The rapid evolution in the microarray technologies allow the monitoring of the 

expression levels of huge number of genes simultaneously under many different experimental 

conditions, these data are called gene expression data matrix [1,2]. Elements included in this 

data matrix represent the value of each gene under different experimental conditions (e.g. 

different tissue types, or different timestamps, etc.). To understand the relationships between 

these genes, the analysis of these data is a crucial step to discover and explain certain 

biological process [3]. To reveal the relations between different genes, machine learning 

approaches are applied to gene expression data [4]. Genes are said to be co-expressed or co-

regulated, if these genes have high level of similarity under different subsets of experimental 

conditions and therefore these genes may share a common biological function or participate in 

the same cellular process [1]. This kind of similarity depends on  the different desired types of 

patterns such as shifting or scaling patterns [5]. Traditional clustering techniques aim at 

finding different groups of genes that behave similarly under all experimental conditions or 

across the whole set of conditions, in other words, trying to find global relations between 

genes. On the other side, genes may be active or behave in the same way under only subsets 

of experimental conditions or participating in many different cellular process or cell 

functions. Therefore, the deep need arises to find data grouping technique that can find 

subsets of genes that share similar expression patterns under only subsets of experimental 

conditions, in addition to finding local relations between genes, this technique is called 
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biclustering. Biclustering tries to find submatrices of the original gene expression data matrix 

that satisfy some sort of similarity or coherency by performing clustering in both dimensions 

in the same time and as a result to this process, the local relations or interactions between 

genes are identified [6-11]. 

Hartigan [12] was the pioneer scientist who introduced the basic idea of biclustering as 

a co-clustering technique in 1970s, followed by the first application of this concept to gene 

expression data by Cheng and Church [13]. Biclustering problem was proved to be NP-

Complete problem and more complex than traditional clustering techniques, therefore most 

biclustering techniques depend on optimization algorithms such as heuristic search [13-14]. 

Biclustering  tries to identify sets of genes that have similar expression patterns under specific 

subsets of the experimental conditions. Starting with an (n X m) data matrix A where n 

denotes number of genes and m represents the number of experimental conditions. Every 

value in this matrix (aij) is the gene expression level for Gene (i) under a certain condition (j). 
 

 

Figure 1. The Microarray gene expression data matrix 

Most of the biclustering techniques starting by identifying different set of elementary or 

initial set of biclusters or ―seeds‖ and continue searching and expanding these ―seeds‖ to find 

optimal set of biclusters that satisfies certain coherency or quality measure. Throughout this 

search and expansion process, these approaches use some measure to assess the quality or 

coherency of biclusters and leading the search process. The development of effective and 

efficient coherency measure is considered an important and crucial process that has a great 

effect to the outcome of the resulting identified biclusters. Here we will present a taxonomy of 

the different coherency measures used by different biclustering approaches. 

In the next section, we will present a mathematical model for the biclustering problem, 

following by a taxonomy of different bicluster types based on their gene expression patterns, 

in section 4, the different bicluster coherency measures are introduced and investigated both 

analytically and mathematically, finally, a conclusion and future work for this paper is 

introduced.  

2. Mathematical modeling of biclustering 

Let X = {G, E} represents a Gene Expression Data Such that,  G= {G(1), G(2), …, 

G(i)..., G(N)} and E= { E(1), E(2), …, E(i)..., E(M)}, Where G is the set of genes and E is the 

set of different experimental conditions related with each gene. Now we have a Data Matrix 

D, where 
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Each element in the data matrix dij represents the expression level of gene i under a specific 

experimental condition j.  

Row number i or g(i) = [Di1, Di2, ..., Dij..., DiM] is an (1 X M) vector represents the 

expression level of gene i under all M experimental conditions. Whereas, column number j or 

E(j) = [D1j, D2j, ..., Dij..., DNj] is an (N X 1) vector represents the expression levels of all N 

genes under a specific experimental condition j. 

Given the previous mathematical model of gene expression data matrix, we can identify 

a bicluster as a submatrix B of matrix D or as a subset Y of X, such that 

  B =[b(i,j)] = [bij]    (1) 

  Y = {I, J}                 (2) 

Where I  is a subset of G and J is a subset of E. 

The final goal is trying to identify several K submatrices or K biclusters such that each 

bicluster BK = [b(i,j)], for each iєIk and jєJk that implies some  measure of coherency. The 

Mean of the row number (i) in a certain bicluster B is defined as   

  biJ  =   
 

   
∑      bij    (3) 

While the Mean of the column number (j) in a certain bicluster B is defined as 

           biJ  =    
 

   
∑     bij                      (4) 

The overall mean of within a certain bicluster B is defined as 

 bIJ  =  
 

   
∑       biJ  = 

 

   
∑      bIj     (5) 

The variance within any bicluster B is computed as  

 VAR (B) =  ∑     ∑      (bij - bIJ)
2
   (6) 

There may be some additional symbols will appear throughout the paper; µ denotes the 

background effect, α represents the row effect, and β as column effect. 

3. Biclusters types based on gene expression patterns 

Here, we will give a brief description of different shapes of biclusters based on types of 

biclusters they can find. There are four major classes of biclusters: 1) Biclusters with constant 

values, 2) Biclusters with constant values on rows or columns, 3) Biclusters with coherent 

values, 4) Biclusters with coherent evolutions. 
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Figure 2.  Different types of biclusters based on gene expression patterns 

3.1 Biclustering with constant values 

This type of biclusters searches for submatrices of the original gene expression data 

matrix that have genes with the same values under subsets of conditions.  

B = [bij] = [constant value (µ)]   (7) 

For noise-free datasets, within each bicluster, the value of variance will be equal to zero, 

which can be changed in the presence of noise. 

3.2 Biclusters with constant values on rows 

The aim of many biclustering algorithms is the identification of biclusters that has the 

same expression patterns across all rows or conditions. In case of constant rows, this is a 

reflection of how a set of conditions are similar over a set of genes, while in case of constant 

columns, it reflects how a set of genes are similar across a group of conditions. The perfect 

constant bicluster on rows is the one where all elements in this bicluster have a constant value 

over its rows, where  

Additive model: 

B = [bij] = [µ + αi]       (8) 

Multiplicative model: 

B = [bij] = [µ X αi]        (9) 

The variance of each row is calculated by 

max (b(i, :)) – min(b(i,:))       (10) 

The value of variance was proven to be equal to zero in case of noise-free data, whereas, 

must be less than the  predefined threshold (δi) in case of noisy data. 

3.2 Biclusters with constant values on columns  

Similar to the previous type, the perfect bicluster with constant values over all columns 

is characterized by that all elements within the bicluster have the same value over all columns, 

or constant expression levels across different groups of genes. 
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Additive model: 

B = [bij] = [µ + βi]      (11) 

Multiplicative model:  

B = [bij] = [µ X βi]       (12) 

The variance of each row is calculated by 

max (b(:, j)) – min(b(:, j))      (13) 

3.3 Biclusters with coherent values and evolutions 

Biclusters are identified by subsets of genes that are up-regulated or down-regulated 

coherently across subsets of conditions. The change in expression value over all rows or 

columns has the same magnitude and happens in the same direction. . This type has two 

models 

Additive model: 

B = [bij] = [µ + αi + βj]      (14) 

Multiplicative model: 

B = [bij] = [µ X αi X βj]     (15) 

In the coherent evolutions biclusters, biclusters may represent the set of experimental 

conditions for different stages in a disease or cellular process that may vary in the same way 

or may vary by the same magnitude but in different directions. The perfect coherent 

evolutions bicluster is identified by that all rows have a linear order across a subset of 

columns or vice versa. Biclusters members may be obtained by the following formula: 

B = [bij] = [µ + αi X βj]    (16) 

3.4 Shifting and scaling expression patterns 

In a shifting pattern, each column is shifted by an additive factor. A shifting pattern 

follows equation (17) : 

eij = πi + βj      (17) 

Where eij represents the expression level of gene i under specific condition j, eij, is a 

shifted expression of a base expression π in row i shifted by a shifting factor β in column j.  

In a scaling pattern, each column is scaled by multiplicative factors. A scaling pattern follows 

equation (18) : 

eij = πi + αj      (18) 

Here, eij is the expression level gene i under experimental condition j. It is a scaled 

expression level of a base expression π in row i a scaling factor α in column j. 

The shifting-scaling pattern is merges shifting pattern and a scaling pattern. Each 

expression is shifted by a shifting factor and scaled by a scaling factor. The shifting-scaling 

pattern follows equation (19) : 

eij = πi X αj + βj     (19) 
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Figure 3. Shifting and scaling patterns 

4. Bicluster coherency measures 

In this section, we will introduce some of coherency measures that mostly or known to 

be used with gene expression biclusters. These measures are used to find any shape of 

biclusters including shifting and scaling patterns in a bicluster. But most of these measures 

cannot identify the perfect shifting and scaling patterns. 

4.1 Variance (VAR) 

The perfect biclusters identified by this measure of coherency are those that minimize 

the overall variance of all resulting biclusters. The overall bicluster variance cane be 

calculated from equation (6). Hartigan [12] used this measure as a measure of coherence in 

his proposed approach, where only constant value biclusters can be detected. Therefore, to 

detect different types of biclusters, other homogeneity measures must be used along with the 

variance. 

4.2 Mean squared residue (MSR) and scaling mean squared residue (SMSR)  

In this type of coherency measure, the good bicluster is the one that lower the mean 

squared residual distance among all biclusters. This is a reflection of how stronger the 

coherency of these biclusters is. A predefined threshold δ may be used to limit the value of 

MSR and in this case it is called δ-bicluster. The biclustering algorithm proposed by Cheng 

and Church [13] used mean squared residue combined with greedy heuristic search to find the 

optimal biclusters. Equation (20) is used to calculate the MSR for a bicluster B with a number 

of (I) rows and (J) columns. 

MSR (B) =   
 

      
∑     ∑     ( bij – biJ – bIj + bIJ)

2
  

 
           (20)

 

A perfect bicluster is identified to be the one with MSR equals to zero. However, MSR 

can find only biclusters with shifting patterns, but it has some limitations that affect its ability 

to identify scaling patterns in gene expression data [14]. 

To overcome this limitation of MSR, Mukhopadhyay et al. [15] proposed an enhanced 

mean squared residue called scaling mean squared residue (SMSR) in equation (21) to find 

biclusters with scaling patterns, but it cannot detect shifting patterns identified by traditional 

MSR. 
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SMSR (B) =   
 

      
∑     ∑       

            –            

              
 

  
(21)

 

4.3 Relevance index coherency measure (RI) 

This kind of coherency is calculated as the total relevance indices of all columns, where the 

relevance index of  a single column is defined by equation (22) 

RIIj =      
      

       
 

    
(22)

 

Where σIj is the variance of all elements in this column or (local variance), on the other 

hand, σj is the variance of the whole dataset or (global variance). We can induce from the 

previous formula that RI gives higher value when the local variance is smaller than the global 

variance and therefore, for a given column, the RI is maximum if it has a local variance of 

zero, while the global one is not. Yip et al. [16] firstly introduced this measure of coherency 

in their work, however, it can only identify biclusters with constant values over rows or 

columns. 

4.4 Correlation-based coherency measures 

Gene expression microarray analysis uses this type of measure in many processes and 

data mining techniques especially in the clustering task. This measure emphasizes on the 

overall similarity of genes taking into considerations negative values of correlation as well. 

Here, we will give a brief description of the  correlation-based coherency measures mostly use 

in gene expression data analysis. 

4.4.1 Pearson’s correlation coefficient (PCC) 

Pearson correlation coefficient PCC is a measure of linear association or relationship 

between any two variables. It is defined as a division of the covariance of two variables by the 

product of their standard deviation. The value of PCC ranges from +1 to -1, where a value of 

+1 means a perfect direct relation or increasing linear relationship. On the other hand, -1 

value implies a perfect decreasing or inverse linear relationship. All values between +1 and -1 

are indicators of the degree of linear dependencies between variables except for the 0 value of 

PCC which implies no linear relationship between the variables. This type of coherency used 

efficiently on the identification of co-regulated genes over different experimental conditions 

[17] which helped in the identification of shifting and scaling patterns in gene expression data 

matrices. However, PCC has a leakage in capturing constant values biclusters or constant 

values over rows or columns because the zero value of standard deviation appears in the 

denominator. The value of PCC can be calculated between any two genes by equation (23) 

PCC(g1, g2) = 
∑            

   
              

√∑            
   
   

  √∑            
   
   

  
   (23) 

Where bi1j and bi2j are the elements in rows i1 and i2 and column j and bi1J and bi2J 

represent the mean values of rows i1 and i2 respectively. 

To calculate the overall PCC within a certain bicluster, PCC values for all pairs of genes 

in the same bicluster are calculated. An adapted version of PCC called average correlation AC 

were used as a measure of coherency in the work introduced by [17, 18]. 

AC (B) = 
∑ ∑           

   
       

     
    

(    )
     (24) 
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4.4.2 Sub-matrix correlation score (SCS) 

This type of correlation measure is defined based on Pearson coefficient correlation 

score by Yang et al. [19], claiming that a perfect correlation is satisfied by perfect linear 

relationship over rows and columns vectors separately. The score of rows and columns 

correlation are calculated by equations (25) and (26) respectively : 

Srow = mini1∊I (Si1J), Si1J =1 -  
∑                   

      

     
   (25) 

Scol = minj1∊J (SIj1), SIj1 =1 -  
∑                   

      

     
   (26) 

Where corr(Xi1J, Xi2J) and corr(XI1j, XI2j) are the Pearson correlation coefficients of all 

pairs of genes and conditions within the same bicluster. Srow  and Scol represent the degree of 

correlation on rows or columns of any bicluster, respectively. The sub-matrix correlation 

score S(B) can be calculated as the minimum of these two score values. The perfect bicluster 

has a score value of zero which means that the rows or columns in this bicluster have a perfect 

linear relation. 

S(B) =min (Srow(I, J) , Scol(I , J))     (27) 
 

4.4.3 Average Spearman’s rho (ASR) 

ASR  was proposed by Ayadi et al. [20] and it is based on the Spearman’s rank 

correlation which measures the statistical relationship between tow non-linear or monotonic 

variables. The value of ASR ranges from +1 to -1, depending on how these two variables are 

related. The main difference between ASR and PCC, is that ASR can detect monotonic 

relationships between variables while PCC can only detect only linear relationships, this 

implies that ASR is less sensitive to noise or outliers than PCC. The ASR can be calculated 

from equation (28). 

ASR (B) =2 X max {  
∑ ∑   

       ∊     
 
 ∊ 

          
 , 

∑ ∑   
       ∊     

 
 ∊ 

          
 }  (28) 

Where ρij and ρIK denote the Spearman correlation between two different genes or conditions. 

4.5 Standardization-based coherency measures 

The platform  of gene expression microarray used to measure the expression values of 

genes can affect these values and can vary significantly. To make a proper comparison 

between genes or patterns, a standardization process of the gene expression values in each 

biclusters is needed to scale these values to a mutual range. Standardization is an important 

step that has a deep and tangible effect on the results of different biclustering techniques. 

Given a bicluster (B), the standardized bicluster (B
\ 

) can be obtained using the following 

formula: 

b
\
ij = 

       

   
     (29) 

Where σgi represents the standard deviation of all values of gene expression levels of 

gene i and μgi denotes for the mean value of row I in bicluster B. Because of using this 

standardization method, which reflects the relative deviation, the up/down co-regulated  genes 

will be clear somehow. Maximal standard area (MSA) [21] is a coherency measure for 

biclusters that depend mainly on the previously stated gene standardization method. MSA 
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starting by computing the area between highest and lowest values of expression levels of a 

given gene in a specific bicluster under different experimental conditions. After that, the same 

calculation is performed to find the lowest and highest values of all genes in the bicluster. 

These values define a region between all conditions within the same bicluster, the area of this 

region represents the value of MSA. (see table 1) 

The lower and higher bands are denoted by Mj(B) and mj(B) and can be calculated from 

equation (30): 

Mj(B) = maxi bij ; mj(B) = mini bij                          (30) 

The area of the region that represents the value of MSA is defined in equation (31): 

MSA (B) = ∑  
     
     

  (  )     (  )      (  )       (  ) 

 
                   (31) 

MSA gives higher values of coherency with less correlated genes, for a perfect 

bicluster, the value of MSA will be equal to zero. (see table 1) 
 

Table 1. Summary of different bicluster coherency measures 

Coherency 

Measure 

Reference Range of 

Coherency 

Values 

Goal of Coherency 

Measure 

Bicluster Type Perfect 

Value 

within a 

Bicluster 

VAR [12] Any Value Variance Minimization Constant Values 

Patterns 

0 

MSR [13] Any Value Mean Squared Residue 

Minimization 

Shifting Patterns 0 

SMSR [15] Any Value Mean Squared Residue 

Minimization 

Scaling Patterns 0 

RI [16] 0 to +1 Relevance Index 

Maximization 

Constant Values over 

Rows or Columns 

1 

PCC [17, 18] -1 to +1 Pearson Correlation 

Coefficient 

Maximization 

Scaling and Shifting 

Patterns 

(Linear Relations) 

-1 or +1 

SCS [19] 0 to +1 Sub-Matrix Correlation 

Score Minimization 

Scaling and Shifting 

Patterns 

(Linear Relations) 

0 

ASR [20] -1 to +1 Average Spearman’s 

Value Maximization 

Scaling and Shifting 

Patterns 

(Non-Linear and 

Monotonic Relations) 

-1 or +1 

MSA [21] Any value Maximal Standard 

Area Minimization 

Scaling and Shifting 

Patterns 

0 

5. Conclusions and future work 

In the recent years, biclustering techniques had a great impact in the analysis of gene 

expression microarray data, most of these techniques start with a random set of seed biclusters 

and keep searching for optimal sets of biclusters that maintain some coherency measure. In 

this paper we introduced some basic definition of the biclustering concept including its 

mathematical model, the different types of biclusters based on the gene expression pattern. 

After that, we presented different measures of coherency for bicluster evaluation starting by 

variance, then mean squared residue, relevance index, and the different types of correlation 

coefficient coherency measures, taking into consideration the mathematical formulas of each 
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measure, points of strengths and limitations facing each of them. This paper can help 

researchers in determining the best coherency measure to asses bicluster quality as these 

measures has a great effect on the bicluster search process and the last output of biclustering 

algorithms. 

In the future, we can perform an experimental study using all previously mentioned 

coherency measures to evaluate the bicluster resulting from different approaches that use 

these measures using different performance indices in both real and synthetic benchmark 

datasets. 
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