
Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

-1-

Face Recognition for Student Attendance using Haar Cascades Algorithm

1Ibrahim Mohamed Ahmed Ali, 2Abdel-Badeeh M. Salem

1Computer Science Department

Faculty of Computer and Information Sciences

Karary University, Khartoum, Sudan

2Computer Science Department

Faculty of Computer and Information Sciences

Ain Shams University, Cairo, Egypt

ibrahim1630@gmail.com, abmsalem@yahoo.com

Abstract

Face recognition is identification and authentication means, it is successfully employed

in many tasks, this paper aims to provide a reliable and effective system to verify the identity

of the students and then allow them to take attendance. The system provides service monthly

reports that contain warning and deprivation lists, which will send to students via e-mail .We

used Haar Cascades techniques that have been used in image recognition and image

compression field, we reached attendance system using fingerprint face.

 As a results the system detect and recognize face and ensure that the process of

attendance is safe, as well as providing the time and effort of the teacher by exemption from

the process of taking attendance manually, furthermore makes the student following up

Attendance Record by himself, we achieved 100% face detection rate on the nineteen sample

of students .in addition to attendance list for all subjects.

Keyword: Face recognition, Haar Cascades, OpenCV, Python, Biometrics.

1. Introduction
Biometric recognition systems are inherently probabilistic, and their performance needs

to be assessed within the context of this fundamental and critical characteristic. Biometric

recognition involves matching, within a tolerance of approximation, of observed biometric

traits against previously collected data for a subject. Approximate matching is required due to

the variations in biological attributes and behaviors both within and between persons.

Consequently, in contrast to the largely binary results associated with most information

technology systems, biometric systems provide probabilistic results.

There are numerous sources of uncertainty and variation in biometric systems, including

the following:

a) Variation within persons.

b) Sensors.

c) Feature extraction and matching algorithms.

d) Data integrity [1].

Face recognition is one of the most challenging areas in the field of computer vision.

Face detection is the first step for face recognition in order to localize and to extract the face

region from the background. For face detection, active contour models referred as snakes, are

being used to detect the edges and for locating the face boundary [2].

mailto:ibrahim1630@gmail.com
mailto:abmsalem@yahoo.com

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

-2-

Modern face recognition has reached an identification rate of greater than 90% for larger

databases with well-controlled pose and illumination conditions. While this is a high rate for

face recognition, it is by no means comparable to methods using keys, batches or passwords,

nor can it bear direct comparison with the recognition abilities of a human concierge [2].

 Furthermore, the human face is not a unique, rigid object. Indeed, there are numerous

factors that cause the appearance of the face to vary. The sources of variation in the facial

appearance can be categorized into two groups: intrinsic factors and extrinsic ones for face

recognition [4]. Facial feature extraction algorithm is widely used. The distinguishing features

found by the algorithm are used to compare images. There exist several algorithms to extract

features.

Automatic recognition is a vast and modern research area of computer vision, reaching

from face detection, face localization, face tracking, extraction of face orientation and facial

features and facial expressions. These will need to tackle some technical problems like

illumination, poses and occlusions [3].

The development of face recognition over the past years allows an organization into

three types of recognition algorithms, namely frontal, profile, and view-tolerant recognition,

depending on both the kind of imagery (facial views) available, and according to the

recognition algorithms. While frontal recognition certainly is the classical approach to tackle

the problem at hand, view-tolerant algorithms usually treat it in a more sophisticated fashion

by taking into consideration some of the underlying physics, geometry, and statistics [2].

The research problem is the time consuming and effort of taking attendance manually,

furthermore it is difficult for students to follow up Attendance Record by themselves.

1. 1 Haar Cascades

Haar classification is a tree-based technique where in the training phase, a statistical

boosted rejection cascade is created. Boosted means that one strong classifier is created from

weak classifiers, and a weak classifier is one that correctly gets the classification right in at

least above fifty percent of the cases. This buildup to a better classifier from many weak is

done by increasing the weight (penalty) on misclassified samples so that in the next iteration of

training a hypothesis that gets those falsely classified samples right is selected [5].

A Haar-like feature considers neighboring rectangular regions at a specific location in a

detection window, sums up the pixel intensities in each region and calculates the difference

between these sums. This difference is then used to categorize subsections of an image.

OpenCv [3] provides haar cascade classifier Implementation with various trained classifier

cascades [6].

The haar cascade approach has several advantages:

a) To handle the large databases haar cascade classifier is the best detector in terms of

speed and reliability.

b) Even the image is affected by illumination, face detection results are more accurate

using haar cascade classifier.

c) There is no restriction on wearing glasses.

Looking at the advantages of haar cascade classifier it is suitable to implement for face

recognition system.

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

-3-

The implementation of face recognition technology includes the following stages:

1.1.1 Detection

When the system is attached to a video surveillance system, the recognition software

searches the field of view of a video camera for faces. If there is a face in the view, it is

detected within a fraction of a second. A multi-scale algorithm is used to search for faces in

low resolution. The system switches to a high-resolution search only after a head-like shape is

detected.

1.1.2 Alignment

Once a face is detected, the system determines the head's position, size and pose. A face

needs to be turned at least 35 degrees toward the camera for the system to register it.

1.1.3 Normalization

 The image of the head is scaled and rotated so that it can be registered and mapped into

an appropriate size and pose. Normalization is performed regardless of the head's location and

distance from the camera. Light does not impact the normalization process.

1.1.4 Representation

The system translates the facial data into a unique code. This coding process allows for

easier comparison of the newly acquired facial data to stored facial data.

1.1.5 Matching

 The newly acquired facial data is compared to the stored data and (ideally) linked to at

least one stored facial representation.

1.2 Open CV

Open Source Computer Vision (OpenCV) was started at Intel in 1999 by Gary Bradsky,

and was first released in 2000. OpenCV supports a wide variety of programming languages

such as C++, Python, Java, etc., and is available on different platforms including Windows,

Linux, Android, and ions [4].

OpenCV is a popular computer vision library. The cross-platform library sets its focus on

real-time image processing and includes patent-free implementations of the latest computer

vision algorithms. In 2008 Willow Garage took over support and OpenCV 2.3. OpenCV is

released under a BSD license, so it is used in academic and commercial projects such as

Google Streetview [7].

Image processing in OpenCV includes the following steps [4].

1.2.1 Changing Color spaces.

There are more than 150 color-space conversion methods available in OpenCV. The

most widely used are BGR  Gray and BGR HSV. The function used is cv2.cvtColor

(), cv2.inRange ()

1.2.2 Geometric Transformations of Images.

There exist different geometric transformations to images like scaling, translation,

rotation, affine transformation, resizing, etc. These functions are available in

cv2.getPerspective Transform.

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

-4-

1.2.3 Image Thresholding.

In Image thresholding, if pixel value is greater than a certain threshold value, it is then

assigned a value (which may be white), or else it is assigned another value (which may be

black). The function used is cv2.threshold.

1.2.4 Smoothing Images.

Image smoothing is achieved by convolving the image through a low-pass filter kernel

which removes the noise. It actually removes high frequency content (e.g.: noise, edges) from

the image therefore the edges are blurred when this is filter is applied.

1.2.5 Morphological Transformations.

Morphological transformations normally performed on binary images. It needs two

inputs, one is the original image, and the second one is called structuring element or kernel

which decides the nature of operation. Two basic morphological operators for transformations

are Erosion and Dilation.

1.2.6 Template Matching.

Template Matching is a method used to search and find the location of a template image

in a larger image. OpenCV comes with a function cv2.matchTemplate () for this purpose. It

slides the template over the input image and compares the template and patch of input image

under the template image.

1.3 Python.

Python is a powerful modern computer programming language. Python allows you to use

variables without declaring them (i.e., it determines types implicitly),and it relies on

indentation as a control structure [8].Python is a good choice for mathematical calculations,

since we can write code quickly, test it easily, and its syntax is similar to the way mathematical

ideas are expressed in the mathematical literature. By learning Python you will also be learning

a major tool used by many web developers. Python is especially important to learn because it is

used very widely as a scripting Language [9].

The remaining paper is setup as follows: Section 2 describes our proposed method and

section 3 describes experimental results. Finally, conclusion and future work is discussed in

last section.

2. The Proposed System Methodology

The study was carried out using hybrid of qualitative research methodology at the karary

computer and information collage in Khartoum Sudan. The main objective of the study was to

develop an attendance system for the student. Actually, the specific phases used in developing

the proposed system included: (1) Problem and need identification; (2) Requirement and

system analysis; (3) Formalization or Modeling; (4) Design or conceptualization; (5)

Implementation; (6) Testing and Maintenance.

2.1 Problem and Need Identification

The main objective of this phase was to identify, characterize, and define the problems

the system will be expected to solve. The main problems identified include: difficult in

ensuring the safety of attendance, a lot of time and effort by the teachers from the process of

taking attend manually, and difficult to follow up Attendance Record by the student.

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

-5-

2.2 Requirements Analysis.

This phase involved getting to know and understand what the users needed the system to

do for them and also stipulate what the system needed to function. Mainly, for user

requirements, the system should automate the attendance to provide the students following up

Attendance Record by themselves as well as providing the time and effort of the teacher by

exemption from the process of taking attend manually. In the other hand, the system

requirements focused on hardware, software, and human (end user) skills to get the fastest,

most reliable and upgradeable computer system. This was categorized as: Hardware

requirements (a computer); Software requirements (Eclipse, Python, OpenCV).

2.3 Formalization.

The system was modeled in two forms to facilitate understanding of how it will operate

and how it arrives at its conclusion.

2.3.1. Enrollment mode.

 Process of registering the biometric characteristics of individuals, to establish the

“ground truth”. Figure 1 shows the enrollment mode.

Figure 1. Enrollment mode

2.3.2. Verification mode

The presented face is compared with a single enrolled “template”. With the presented

token, the biometric template (or samples) associated with the user will be retrieved. The

extracted feature from the input sample will be compared with the template from the database.

The output of the comparison is an accept/reject decision figure 2 describes this mode.

Figure 2. Verification mode

2.4 Implementation

This phase involves the actual coding of the system. Before writing the code we followed

the installation steps.

System Database

Capture the

Photo

Feature Extraction

Student ID

Matche

r

 No

Yes

 Add to the Attendance list

System Database

Capture the

Photo

Feature Extraction

Student ID

Template of the

Student ID

Rejection Message

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

-6-

a) Install eclipse then install PyDev plugin to be able to work with python.

b) Install python 2.7 and make sure pip is installed.

c) Install opencv 2.4 and link it to python.

d) Install all missing libraries in python using pip

figure 3 shows the installation steps.

 Starts

Figure 3. Installation steps

The system consists of three main components detection, training and matching figure 4

shows sample of image in enrollment mode and the same image in verification mode. As well

as figure 5 shows screen shot of eclipse workspace linked with PyDev an listing the classifier,

dataset, trainer and python libarary.

Enrollment

Verification

 Figure 4. Enrollment and Verification Figure 5. Eclipse workspace

The codes were developed and customized in python. It runs on a Windows 7 platform,

running eclipse neon editor linked with opencv library.

3. Result

The system connect all gathered information and performs inferences through its

knowledge process to output a verification of the student. In the detection face we had

enrollment 50 image of student in the database, any image saved in 20 intra class variation, the

total image in the database is 1000.

After training the data set the system gave 100% of recognition images and a live faces

figure 6.

Eclipse PyDev Python

Opencv Missing libraries

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

-7-

The verification describes the name and the ratio. Furthermore, the system evaluate and

send reports to the students by e-mail, students can follow up attendance record by themselves.

Figure 6. Intra class variation in verification mode

A sample of the prolog coding of the system rules can be seen in Appendix A and B.

4. Conclusion and future work

Face Recognition has been playing a vital role in the active research area, especially in

computer vision research In this paper we provided a reliable and effective system to verify the

identity of the students and then allow them to take attendance .From the experimental point of

view it is clear that haar cascade classifier has shown excellent performance for the images

which contain Intra class variation samples. In most face recognition systems photos can be

used to recognize faces which is a problem, to enhancement this work we need to develop

algorithms that recognize if this is a live face or a picture.

References

[1]. Oseph N. Pato and Lynette I. Millett, "Biometric recognition challenges and opportunity",

National Academy of Sciences, Washington, 2010.

[2]. https://www.cse.iitk.ac.in/users/biometrics/ "Face Recognition System", 15 dec 2018.

[3]. Sushma J., Sarita S. and Rakesh S. Jadon,"COMPARISON BETWEEN FACE RECOGNITION

ALGORITHM-EIGENFACES, FISHERFACES AND ELASTIC BUNCH GRAPH MATCHING,

Journal of Global Research in Computer Science, Volume 2, No. 7, July 2011.

[4]. Rabia Jafri and Hamid R. Arabnia, "A Survey of Face Recognition Techniques", Journal of

Information Processing Systems, Vol.5, No.2, June 2009.

[5]. Staffan Reinius," Object recognition using the OpenCV Haar cascade-classifier on the iOS
platform", Uppsala university, Department of Information Technology, 2013.

[6]. Vandna S., Dr. Vinod S. and Bhupendra S. , "FACE DETECTION BY HAAR CASCADE

CLASSIFIER WITH SIMPLE AND COMPLEX BACKGROUNDS IMAGES USING OPENCV

IMPLEMENTATION", International Journal of Advanced Technology in Engineering and
Science, Volume No.01, Issue No. 12, December 2013.

[7]. Philipp Wagner," Face Recognition with OpenCV2", April 9, 2012.

[8]. S.R. Doty," Python Basics", 2008.

[9]. http://cs.brown.edu/courses/cs016/static/files/lectures/slides/pythonIntro," Introduction to Python –

2018", 21 des 2018.

https://www.cse.iitk.ac.in/users/biometrics/

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

-8-

Appendix A: Sample python Code of detector

import cv2 , os
import numpy as np
from PIL import Image

recognizer = cv2.createLBPHFaceRecognizer()
recognizer.load('trainer/trainer.xml')
cascadePath = "Classifiers/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath);

cam = cv2.VideoCapture(0)
font = cv2.cv.InitFont(1, 1, 1, 0, 1, 1) #Creates a font
offset =10
while True:
 ret, im =cam.read()
 if ret:
 gray=cv2.cvtColor(im,cv2.COLOR_RGB2GRAY)
 faces=faceCascade.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=5,
minSize=(100, 100), flags=cv2.CASCADE_SCALE_IMAGE)
 if len(faces)==0:
 cv2.imshow('im',im)
 cv2.waitKey(10)
 else:
 for(x,y,w,h) in faces:
 nbr_predicted, conf = recognizer.predict(gray[y:y+h,x:x+w])

 if(nbr_predicted==1 or nbr_predicted==3 or nbr_predicted==5):
nbr_predicted='Abubaker'
 elif(nbr_predicted==2 or nbr_predicted==4):
nbr_predicted='Ibrahim'

 cv2.rectangle(im,(x-offset,y-
offset),(x+w+offset,y+h+offset),(225,255,255),2)
 cv2.rectangle(im,(x-
offset,y+h+offset),(x+w+offset,y+h+offset+30),(225,255,255),-1)

 cv2.cv.PutText(cv2.cv.fromarray(im),str("You are:
"+nbr_predicted), (x,y+h+20),font, 255) #Draw the text
 cv2.cv.PutText(cv2.cv.fromarray(im),str(conf)[:-8]+"%",
(x,y+h+40),font, 255) #Draw the text
 cv2.imshow('im',im)

 cv2.waitKey(10)

Appendix B : Sample python Code of trainer

import cv2
import os
import numpy as np
from PIL import Image

recognizer = cv2.createLBPHFaceRecognizer()
cascadePath = "Classifiers/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath);
path = 'dataSet'

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

-9-

def get_images_and_labels(path):
image_paths = [os.path.join(path, f) for f in os.listdir(path)]
images will contains face images
images = []
labels will contains the label that is assigned to the image
labels = []
for image_path in image_paths:
Read the image and convert to grayscale
image_pil = Image.open(image_path).convert('L')
Convert the image format into numpy array
image = np.array(image_pil, 'uint8')
Get the label of the image
nbr = int(os.path.split(image_path)[1].split(".")[0].replace("face-", ""))
#nbr=int(''.join(str(ord(c)) for c in nbr))
print nbr
Detect the face in the image
faces = faceCascade.detectMultiScale(image)
If face is detected, append the face to images and the label to labels
for (x, y, w, h) in faces:
images.append(image[y: y + h, x: x + w])
labels.append(nbr)
cv2.imshow("Adding faces to traning set...", image[y: y + h, x: x + w])
cv2.waitKey(10)
return the images list and labels list
return images, labels

images, labels = get_images_and_labels(path)
cv2.imshow('test',images[0])
cv2.waitKey(1)

recognizer.train(images, np.array(labels))
recognizer.save('trainer/trainer.xml')
cv2.destroyAllWindows()

