
Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

 -101-

Tasks Oriented Round Robin Scheduling Model for Mobile Cloud

Computing

Akomolafe Oladeji Patrick and Babalola Olawale Olaniyi

Computer Science Department, University of Ibadan, Oyo, Nigeria

dlensplc@gmail.com

Abstract

Data offloading helps to send computation intensive part of a mobile application tasks

to the cloud, a resource rich environment, for execution and after the processing, the result is

sent back to the mobile devices thereby minimizing the execution time and computational

cost. A lot of these tasks having different requirements and nature compete for resources in

the cloud; therefore, effective and clever scheduling method is required.

There have been a lot of scheduling research works in Mobile Cloud Computing (MCC)

but most have been to minimize execution time and energy consumption, little consideration

has been given to how more sensitive and important are some tasks over others. This often

leads to application failure of some critical mission and delay sensitive mobile applications;

this endangers vital processes even lives. In this work, we developed a model to bridge this

gap by giving cognizance to how more important and delay sensitive some applications’ tasks

are and at the same time, with fairness to other less important tasks using Adjustable Time

Slice Round Robin(ATSRR) Scheduling method.

The performance evaluation of this work was done using a developed simulator and it

was established that more important and delay sensitive jobs were churned out more than less

important tasks with minimized turnaround time and fairness to all jobs with ATSRR over

other existing works. As a result, this model can find its application in a cloud environment

whereby critical missions and delay sensitive mobile apps are serviced by the Cloud Service

Provider

Keywords: mobile cloud computing, scheduling, adjustable time slice, round robin,

turnaround, fairness, delay Sensitive and delay tolerant mobile application

1. Introduction

Statistics shows that by 2020, 70% of the world population would be dominated by

mobile users [6] and a similar report indicated that in February 2017, more than 2.7million

mobile application were already available in the Android market [4] . This is a motivation that

mobile devices such as smartphone, tablets and wearable would continue to be relevant in

computing world and in our society at large.

However, the proliferation of these mobile applications, especially the resource hungry

and computation-intensive applications with stringent delay requirements, is a big challenge

to the resource-constrained mobile devices with low compute power and limited battery life.

Delay sensitive and intensive resource demanding mobile applications suffer if allowed to be

executed on the mobile devices [1]. The solution to the problem is Mobile Cloud Computing

(MCC) [9]. The Mobile Cloud Computing Forum considers MCC as “an infrastructure where

both the data storage and the data processing happen outside of the mobile device” [3].

mailto:dlensplc@gmail.com

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

 -102-

1.1 Cloud Computing

An enabling IT paradigm which helps to bridge the gap with the aim of optimizing the

energy consumption and application execution time is called Cloud computing [11].

According to National Institute of Standards and Technology (2008) ,Cloud computing is

defined as “a model for enabling ubiquitous, convenient, on demand network access to a

shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction” [13].

Some of the mobile apps offloaded to the cloud can withstand some delays, that is, the

delay tolerant mobile apps such as urban tomography, social networking [8] without suffering

while delay beyond 250ms could be critical to face recognition, video conferencing, vehicular

communications, authentication, mobile health, m-gaming, conversational video etc which are

delay sensitive. As a result, processing and rendering of delay sensitive applications has

become an emerging area of interest [2]. In addition, investigating which task gets which

resource first with fairness in all circumstance plays a significant role in cloud environment as

the cloud users get upset when some critical mobile applications suffer a noticeable delay,

reported Cloud Providers [19].

Tasks scheduling are responsible for mapping jobs submitted to cloud environment onto

available resources in such a way that the total response time and latency are minimized and

the throughput and utilization of resources are maximized [5]. Traditional scheduling methods

include First come first serve, Shortest Job First, Priority, Round Robin etc. but they are

however seldom used in real time environment because of their various disadvantages except

Round Robin [15] and different environments requires different scheduling method [19].

There has been a lot of MCC research works which address mobile application tasks

scheduling using both traditional and improved scheduling algorithms. However, most of

which are to minimize makespan, energy consumption and cost but little considerations were

given to starved processes ; one of the major problems in cloud [14], throughput

maximization and its balance with the nature of the applications being scheduled.

Specifically, a QoS and mobile aware framework by [10] claimed to improve the waiting time

and the throughput of mobile cloud apps using FCFS method, this method suffers from

convoy effect [16] and it’s also devoid of fairness which is fundamental for an interactive

environment like MCC.

Consequently, some delay sensitive mobile apps suffer and jobs throughput is minimal

with Mahinur’s framework and these related works because they are not tasks oriented. This

is one of the biggest issues in job scheduling in cloud environment [17]. Most works, even

with improved scheduling algorithms, did not give much cognizance to how sensitive some

applications are while scheduling the offloaded tasks; some mobile applications offloaded into

the cloud are delay tolerant such that if not serviced within a giving period of time, no harm

would be done to them [17] while mobile cloud apps such as m-health, conversational videos,

m-gaming are delay sensitive such that they have to be serviced within a particular deadline to

avoid havoc to the jobs and even to lives. Building on these works, a Tasks Oriented

Scheduling model is therefore put forward which gives cognizance to how sensitive an

application is and at the same time minimizes the turnaround time with improved fairness to

all jobs using an improved Adjustable Time Slice Round Robin (ATSRR) scheduling algorithm.

This work aims at developing a tasks oriented scheduling model using an improved

Adjustable Time Slice Round Robin (ATSRR) scheduling framework.

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

 -103-

2. Review of Related Works

The multitenant capability of cloud environment through virtualization is an underlying

factor that ultimately demands deciding how, when and which job gets which resource first,

that is, the scheduling method. Thus, there has been a lot of MCC research works which

address mobile application tasks scheduling using both traditional and improved scheduling

algorithms. However, most of which are to minimize makespan, energy consumption and

monetary cost but little considerations were given to starved processes which is one of the

major problems in cloud [14]. In addition, some of these works are also devoid of fairness

which is fundamental for an interactive environment like MCC [18].

To the best of our knowledge, very few works have investigated prioritizing the

offloaded task even the few ones didn’t consider the starvation suffered by the less important

jobs.

2.1 The Overview of the Scheduling Algorithm by Muhammad et al (2017)

Their approach was to select an elastic time quantum that will allow a process to

execute completely if its remaining execution time is less than or equal to 0.2th of its actual

time, this condition is for all tasks. First, the maximum burst time was obtained from the

available processes in the ready queue. Then, a proportion of this time was used to set the

time quantum. As a rule of thumb, 0.8th fraction of the maximum burst time was selected as

Time Quantum. Now the scheduler assigns the CPU to all the processes in the ready queue

with burst times less than the time quantum while larger ones are kept on hold. As soon as all

the smaller processes complete their execution, the time quantum is set equal to the maximum

burst time. The Gantt chart in figure 4.5 and table 4.3 shows the result of applying the above

algorithm on the dataset in table 4.1.

2.2 The Overview of the Scheduling Algorithm by Mahinur & Zohra (2017)

[10] suggested a QoS and mobility aware optimal resource allocation architecture,

namely Q-MAC, for remote code execution in MCC that offers higher efficiency in timeliness

and reliability domains with the aim of increasing the number of requests processes per a

period of time (throughput) and minimizing the waiting time. When offloading requests come

from clients to the cloud, it maintains the tasks requests in a queue according to first-come-

first-serve (FCFS) method. Same clients queue handler with the same approach also work in

every cloudlet.

2.3 The Overview of the Scheduling Algorithm by Goel & Garg (2016)

[7] Proposed an algorithm which combines the working principle of fundamental

scheduling algorithms. Dynamically Time Slice (DTS) is calculated which allocates different

time quantum for each process based on priority, shortest CPU burst time and context switch

avoidance time.

Shuffle the processes in ascending order according to the factor of each process in the

ready queue (RQ) such that the head of the ready queue contains the lowest factor process

based on the burst time, arrival time & priority of the process.From all these reviewed works,

very few could actually account for how more important a particular task is over other, our

work is therefore put forward to service more of the delay sensitive tasks than the less time

conscious tasks however with fairness in all circumstances using Adjustable Time Slice

Scheduling Round Robin method. The next chapter describes the model to achieve these task

oriented framework.

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

 -104-

3. The Methodology of the Proposed Adjustable Time Slice Round Robin

Scheduling (ATSRR) model

The solution is a modified round robin algorithm that took into consideration the

priority of the jobs entered into the system as well as the burst time of the jobs to determine a

time quantum for the round robin scheduler. The quantum time was obtained by taking 80%

(leveraging on [12]) of the largest burst time of jobs in the job queue. This allowed for the

efficient dispatch of jobs and also solved the problem of too small or too big quantum times

selections which can lead to problems like too many context switches when the quantum is

too small and a convoy effect when the quantum time is too large.

3.1 The Components of the Methodology

The solution consists of four major modules and they are:

1. The Priority determination module,

2. Burst time determination module,

3. Quantum determination module, and

4. The modified round robin scheduler module.

 Figure 1: ATSRR Model

The first module is the priority determination module which determined the priority of

the system. The determination of priority classified that job could be either delay sensitive or

delay tolerant. The next module after the priority determination is the burst time

determination module. This module made it possible to get the maximum burst time that was

used to determine the quantum time of the system. The final part of the system was the

scheduler which is actually a modified round robin scheduling algorithm.

The modified round robin algorithm used the dynamically determined quantum time to

start scheduling. It interacted with the dispatcher to check if there were processes still in the

ready queue. The algorithm checked the priority of the processes in the ready queue to

determine selection of processes from the queue. The priority of the selected process

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

 -105-

determined how the process was to be executed. When the priority was high, the process was

assigned the CPU for the set quantum time, and then the scheduler checked the remaining

burst time to decide its next move. When the remaining burst time was less than 20% of the

actual time, the process was allowed to run to completion, else, if the remaining burst time

was greater than 20% of the quantum time, the process was preempted and placed in the ready

queue tail.

On the other hand, when the selected process was low priority process, the process was

also assigned the CPU for the default quantum time, after which the scheduler checked the

remaining burst time to decide its next move. When the remaining burst time was less than

5% of the actual time, the process was allowed to run to completion, else, when the remaining

burst time was greater than 5% of the actual time, the process was preempted and placed in

the ready queue tail.

Data insertion Algorithm for the Modified Priority Queue

Data = new data item (process)

Int I = 0;

If {! Is full ()}

IntArray[itemCount+1]= data;

Else

“start from the right end of the queue

For (i=itemCount-1; I >= 0; i--)

“if data is larger, shift existing item to right end”

 if(data> intArray[i])

Else

Break;

“insert data

intArray[i+1]=data;

itemCount+1;

Figure 2: Algorithm for insertion of data in the modified priority queue.

3.1.1 Burst Time/Deadline Analyzer

After determining the priority of a job and assigning the job to its designated position in

the modified priority queue, the next task was to determine the burst time of the job. The burst

time of a job is the amount of CPU time the job requires. This was “predicted” by using the

following algorithm:

Burst Time Determination Algorithm

 tn = Actual time;

p = wrished parameter;

T(n+1) = predicted burst time.

T(n+1) = tn(p) + (1-p)Tn

If(T(n) = T(0))

T(n+1) = initial burst time;

Else

T(n+1) = tn(p) + (1-p)Tn;

Figure 3: Burst Time Determination Algorithm.

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

 -106-

Quantum Time Determination Algorithm

The algorithm for the determination of the quantum time for the round robin algorithm

is shown in figure 3.4.

Q = Job priority queue;

I = 0;

Max = 0;

while (I < Q.Count)

if (max < Q[i])

Max = Q[i];

Else

Max = Max;

I = I + 1;

QT = 0.8 * max ⸗80% of the max burst time

Figure 4: Quantum Time Determination Algorithm

4. The Data Sets

The experiment was composed of dataset from Goel et al (2016). ATSRR algorithm

was applied on this dataset and also the proposed methods by Mahnuir et al (2017),

Muhammad et al (2017) and Goel et al (2016) were also applied on this data set for

comparative analysis.

Dataset considered for the Turnaround Time and Waiting Times are presented for each

method. The Gantt charts for each algorithm are also presented.

Table 1: Experimental Data set (Goel et al 2016)

PROCESS ID BURST TIME ARRIVAL TIME PRIORITY

1 23 0 3

2 34 5 1

3 34 3 3

4 12 6 4

5 8 8 2

6 10 4 5

7 31 1 1

8 23 2 4

9 9 3 5

10 16 6 1

4.1 Performance Metrics

Below are the performance metrics considered in the experiment:

 Turnaround time: Total time taken from submission of the process till the completion.

Turnaround time should minimize the time of users who wait for the output.

 Waiting time: Should be minimized as it is the total time spent in ready queue

 Fairness: CPU should be unbiased and every process should get its fair time to execute.

But more attention should be given to delay sensitive jobs.

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

 -107-

4.2 Simulation settings

A simulator was developed to run the work’s algorithm. The simulator was designed to

take advantages of the leveraging parts of the model and also to give a visual display of the

algorithm at work.

4.2.1 The Simulator Implementation Tools

The simulator was designed using

1. The Microsoft C# programming language and

2. The Microsoft visual studio integrated development environment.

The simulator randomly generated new processes based on the priority determination

module. During the creation of a new process, the priority determination module, burst time

determination module and quantum time calculation modules served as input to the new

process creation module. The arrival time of the processes were also randomized to create a

real life arrival event of processes in the cloud environment..

4.3 Evaluation of ATSRR Model

The ATSRR model was compared with other three related works and the results are

presented thereafter.

Table 2: Turnaround and Waiting Time of ATSRR

PROCESS

ID

BURST

TIME

ARRIVAL

TIME

PRIORITY TURNAROUND

TIME

WAITING

TIME

1 23 0 3 78 55

2 34 5 1 190 167

3 34 3 3 190 156

4 12 6 4 31 19

5 8 8 2 19 105

6 10 4 5 160 9

7 31 1 1 55 129

8 23 2 4 9 32

9 9 3 5 129 0

10 16 6 1 96.2 113

Figure 5: Gantt chart of the Goel et al (2016) algorithm

Figure 6: Gantt chart of the Muhammad et (2017) algorithm

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

 -108-

Figure 7: Gantt chart of the Mahnuir et al (2017) algorithm

Figure 8: Gantt chart of the ATSRR algorithm

Table 3: Waiting Time Comparative Analysis of the Existing works and the ATSRR

PROCESS ID PRIORITY MAHINUR MUHAMMAD GOEL ATSRR

1 3 0 0 76 55

2 1 23 101 160 167

3 3 57 154 158 156

4 4 90 23 117 19

5 2 102 35 28 105

6 5 110 43 36 9

7 1 120 164 185 129

8 4 151 53 136 32

9 5 174 76 60 0

10 1 183 85 152 113

Average

Waiting Time

 101.1 73.4 110 78.5

Figure 9: The Bar Chart for Waiting Time Comparative Analysis

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

 -109-

Table 4: Turnaround Comparative Analysis of the Existing and the ATSRR

PROCESS ID PRIORITY MAHINUR MUHAMMAD GOEL ATSRR

1 3 23 23 99 78

2 1 57 135 194 190

3 3 91 188 192 190

4 4 102 35 139 31

5 2 110 43 36 113

6 5 120 53 46 19

7 1 151 195 216 160

8 4 174 76 159 55

9 5 183 85 69 9

10 1 196 101 168 129

Average

Turnaround

Time

 120.7 93.4 131.8 96.2

Figure 10: The Bar Chart for the Comparative Analysis of Turnaround

4.4 The Result Discussion and Quantitative Analysis of the Work

According to fig. 8, P4, P6, P8 and P9 which are the most critical tasks with higher

priority of 4 and 5 are serviced within the first 55ms while in the other works as shown in the

above Fig 5, 6 and 7, they were serviced at a longer time. The grant chats, Table 3 and table 4

are comparatively summarized in the below table 5, it gives a clear picture of the average

Waiting Time and Turnarounds of these most critical tasks

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

 -110-

Table 5: Quantitative Comparisons in terms of Turnaround and Waiting Time between

ATSRR and other 3 Works

 Mahnuir Muhammad Goel ATSRR

Ave. Waiting Time of the 4 Critical tasks

P4, P6, P8 and P9

131.25 48.75 87.25 15

Ave. Waiting Time of the whole 10

processes

101.1 73.4 110 78.5

Ave. Turnaround of the 4 Critical tasks

P4, P6, P8 and P9

132.5 62.5 103.25 28.5

Ave. turnaround of the whole 10

processes

120.7 93.4 131.8 96.2

From table 5, it is obvious that the most important jobs are serviced the fastest with

average Turnaround Time of 28.5 when compared with other 3 works and this justifies the

goal of this work. Even only the Muhammad et al’s work is superior to our work in terms of

the average turnaround of the 10 processes but still has the set back of not giving cognizance

to how important a job is.

From this same table, we can easily deduce the significance of ATSRR in terms of the

waiting time of the most critical tasks.

By far, the most critical tasks P4, P6, P8 and P9 have the least Average Waiting Time of

15ms with ATSRR when compared with other 3 works, this is a crystal evidence of the

cognizance being given to these delay sensitive jobs and they churn out faster. Even in

general consideration, after Muhammad's method, the ATSRR still has the next minimum

average waiting time for the 10 tasks; this indicates that averagely, there is fairness to all other

tasks despite that the more important jobs are given priority.

5. Conclusion

The ATSRR showed an improved fairness to all tasks during task execution when

compared with the existing QOS and mobile aware framework and other related works . A

task oriented scheduling round robin model with an adjustable time slice was designed which

consists of three basic modules namely; the priority module, burst time determination module

and the Adjustable Time Slice Scheduler. The priority module was designed to give

cognizance to how more important was an application task was over others, the burst time

module was to determine the amount of time a task would be using the cloud resource and the

integral part of the research methodology took place in the Adjustable Time Slice Round

Robin (ATSRR) scheduler. This scheduler helps to give fairness to all tasks.

Meanwhile, an improved turnaround time of average value of 28.5ms against the other 3

works with 132.5, 62.5 and 103.5 was achieved. This signifies that minimized response time

was achieved for some jobs of high priority and the work has been able to achieve its

objectives by servicing and churning out more important jobs (delay sensitive) tasks with

higher priority faster than others existing related works.

6. Recommendation and Future Works

This work can bring about better cloud scheduler performance in terms of improved

response time and priority to some more important tasks if deployed at the cloud

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

 -111-

environment. Cloud service Providers that service much of critical mission and delay

sensitive mobile apps like earthquake monitoring system and mobile health application would

find this model interesting if integrated into their environment.

The developed simulator dynamically generates processes, determines burst time and

assigns priority, for it to be more versed, future work can be extended to achieving these tasks

statically.

References

[1]. A. Bourouis, A. Zerdazi, M. Feham, A. Bouchachia, M-health: Skin disease analysis

system using smartphone’s camera, Procedia Computer Science 19 (2013) 1116–1120.

[2]. ACM Transactions on Multimedia Computing, Communications, and Applications

(ACM TOMM) Special Issue on Delay-Sensitive Video Computing in the Cloud.

(2016).

[3]. Ali,M.: Green cloud on the horizon (2009) .In:Proceedingsofthe1stInternational

Conference on Cloud Computing (CloudCom), Manila, pp. 451–459 (2009).

[4]. AppBrain. 2017.Android Applications. Retrieved from.

https://www.appbrain.com/stats/number-of-androidapps

[5]. Demchenko Y, de Laat C (2011, March) Defining generic architecture for cloud

infrastructure as a Service model, The International symposium on grids and clouds and

the open grid forum Academia Sinica, pp 2–10.

[6]. Ericsson. 2016.A survey on Smartphones. Retrieved from

https://www.ericsson.com/news/ 1925907”, accessed on 02 February 2017.

[7]. Goel. N., & Garg,R.B., (2016). Performance Analysis of CPU Scheduling Algorithms

with NovelOMDRRS Algorithm . IJACSA International Journal of Advanced

Computer Science and Applications, Vol. 7, No. 1, 2016. Research Scholar Department

of Computer Science, TMU, India Delhi Universty, India.

[8]. Huaming Wu and Katinka Wolter. (2017). Stochastic Analysis of Delayed Mobile

Offloading in Heterogeneous Networks . IEEE TRANSACTIONS ON MOBILE

COMPUTING, VOL. , NO. , 2017. IEEE International Conference on Communication,

Computing and Digital Systems. University of Engineering and

[9]. Kurma, K., Lu, Lu Y-H., 2010. Cloud Computing for mobile Users: can mobile

computation save energy?

[10]. Mahinur, A., Fatema, & Zohra. (2017). Q-MAC: QoS and Mobility Aware Optimal

Resource Allocation for Dynamic Application Offloading in Mobile Cloud Computing

.International Conference on Electrical, Computer and Communication Engineering

(ECCE)/IEEE, February 16-18, 2017, Cox’s Bazar, Bangladesh.

[11]. Muhammad H., ur R., Chee S., L, Ahsan I., Teh Ying W., (2017)Faculty of Computer

Science and Information Technology University of Malaya 50603, Kuala Lumpur,

Malaysia mhrehman@siswa.um.edu.my, csliew@um.edu.my, tehyw@um.edu.my.

Opportunistic Computation Offloading in Mobile Edge Cloud Computing

Environments.

[12]. Muhammad, U., Aamna, S.& Abu, B. 2017. An Efficient Dynamic Round Robin

Algorithm for CPU scheduling. University of Engineering and Technology, Lahore

mufarooq40@gmail.com. 2017 IEEE Inter national Conference on Communication,

Computing and Digital Systems

mailto:tehyw@um.edu.my
mailto:mufarooq40@gmail.com

Egyptian Computer Science Journal Vol. 43 No.2 May 2019 ISSN-1110-2586

 -112-

[13]. Peter M., Timothy G., “The NIST Definition of Cloud Computing”, Jan, 2011.

http://docs.ismgcorp.com/files/external/Draft-SP-800-145 Cloud Definition.pdf.

[14]. Samir E.,, Shahenda S.,& Manar J. (2017). A novel hybrid of Shortest job first and

round Robin with dynamic variable quantum time task scheduling technique. Journal of

Cloud Computing: Advances, Systems and Applications.

[15]. Silberschatz, A., Peterson, J. L., and Galvin, B.,Operating System Concepts, Addison

Wesley, 7th Edition, 2006.

[16]. Silberschatz, A. , Galvin, P. & Gagne, 2012. Operating System Concepts (9th Ed.) .

Yale University, Wiley.

[17]. Swachil, J., Patel., Upendra, R., & Bhoi. (2014). Improved Priority based Job

Scheduling. Algorithm in Cloud Computing using Iterative Method.Fourth International

Conference on Advances in Computing and Communications.Computer Science &

Engineering Dept.Vadodara, India .2014 Fourth International Conference on Advances

in Computing and Communications.

[18]. Syed H., Muhammad S., Abd L., Yahaya C., Shafi’i M.. (2016). Resource Scheduling

for Infrastructure as a Service (IaaS) in Cloud Computing: Challenges and

Opportunities. Journal of Network and Computer Applications.

[19]. Tanenbaum,A . 2014. Modern Operating System (3rd ed.). The Netherland, Vrije

Universiteit,.Amsterdam.

