
Egyptian Computer Science Journal Vol.45.No.1 January 2021, ISSN-1110-2586

Automated Rapid Prototyping of TUG Specifications for Implementing Atomic

Read/Write Shared Memory in Mobile Ad Hoc Networks

Reham.A.Shihata

PhD in Computer Science, EL Menoufia University –Egypt. Software Consultant

in Egyptian Syndicate of Programmers & Scientists.

anwerreham@yahoo.com

Abstract: A Rapid prototyping has been used for exploring vague user requirements in the front-end of the software life cycle.

Automated rapid prototyping may reduce cost of prototyping and the time of developing it .One automated rapid prototyping technique is the

direct execution of a specification. Direct execution of a specification has the benefits of quick construction of the prototype, direct support

for formal specification, and quick response to the specification changes. However existing formal specification languages still have

difficulties in specifying software systems such as non functional behavior of the systems. For non-executable formal specification

languages, a prototype may be derived from the specification via software transformations. This approach to rapid prototyping uses a formal

specification language to automatically generate a prototype in Prolog via a set of software transformation rules. Because there is a direct

correspondence between the language and Prolog, the transformation is mechanical and straight forward. Specifiers can concentrate on

generating the prototype without the distraction of transforming one notation into another. This formal specification language may not

provide enough abstractions for provide enough abstraction for prototyping some particular features of systems. Therefore, this approach is

designed to support the derived prototype to be extended or modified in a modular manner. The specification is written in modules in terms

of the language patterns that support module independence, the prototype is then derived in a modular way that supports the ease of

modifications to the prototype. The software transformation rules used for the derivation of prototypes in Prolog are presented. In this paper,

this specification is applied on the implementation for atomic object Read/Write shared memory in mobile ad hoc networks (note: a CRS

refinement on each invocation of the main application of the paper is presented by uppercase letters, but in the same application the

based associating abstract atomic objects with certain geographic locations and services are represented by lowercase letters).

Keywords: Rapid Prototyping, TUG Specification, Prolog, Quorum Systems, CRS Refinement, Mobile Ad Hoc Networks.

I. Introduction
 Tree Unified with Grammar (TUG) was developed to support a system to be developed through an integration of

conventional software development, operational specification, rapid prototyping via software transformations, software reuse,

and analysis of specifications and programs via testing and proofs. The language integrates various software development

paradigms into a coherent whole to fit specific needs of developing organizations. This language improves the reusability of

formal specifications in the following ways [1][2][3]:

(1) A developer can run a TUG specification as a prototype to study its behavior due to its executability at the front-end of the

software life cycle

(2) A developer can easily write a parametric program corresponding to its parametric.

 Rapid prototyping has been used for exploring vague user requirements in the front-end of the software life cycle. When the

vague user requirements are understood, the prototype is thrown away. Therefore, a throwaway prototype should be built

quickly and cheaply. Manual rapid prototyping methods aren't cost effective for building throwaway prototypes. Automated

rapid prototyping may reduce the cost of prototyping and the time of developing it. One automated rapid prototyping technique

is the direct execution of a specification. Direct execution of a specification has the benefits of quick construction of the

prototype, direct support for formal specifications, and quick response to the specification changes. However, existing formal

specification languages still have difficulties in specifying software systems such as non-functional behavior of the system for

non-executable formal specification languages a prototype may be derived from the specification via software

transformations]. Automatic rapid prototyping has its benefits; however, it also has the problems. The use of a prototype

depends on the capability of its specification. In addition, re-derivation of prototypes from scratch may not be efficient if the

specification is large. The approach to rapid prototyping uses a formal specification language to automatically generate a

prototype in prolog via a set of software transformation rules. Because there is a direct correspondence between the language

and prolog, the transformation is mechanical and straight forward. Specifiers can concentrate on generating the prototype

without the distraction of transforming one notation into another. In order to avoid the re-derivation of the entire prototype

from scratch we allow the prototype to be updated only in response to the revised specification never the less, if there is a

major change in the specification, a new prototype is suggested to be regenerated from scratch. Like other existing formal

specification languages, our formal specification language may not provide enough abstractions for prototyping some

particular features of systems. Therefore, this approach is designed to support the derived prototype to be extended or modified

in a modular manner. The specification is written in modules in terms of the language patterns that support module

independence, the prototype is then derived in a modular way that supports the ease of modifications to the prototype. The

software transformation rules used for the derivation of prototypes in prolog are presented. TUG specification language (Tree

Unified with Grammar) was developed to support a system to be developed through an integration of conventional software

development, operational specification, and rapid prototyping via software transformations, software reuse, and analysis of

specifications and programs via testing and proofs. The language integrates various software development paradigms into a

80

mailto:anwerreham@yahoo.com

Egyptian Computer Science Journal Vol.45.No.1 January 2021, ISSN-1110-2586

coherent whole to fit specific needs of developing organizations. The TUG specification language consists of 3 parts: a name

part where the title with input/output parameters are given, an analysis part where the input data is defined, and an anatomy

part where the output data is generated. The name part contains a module or scheme title with input/output parameters the

input/output parameters are enclosed in parentheses. The analysis part contains the rules for analyzing the input data. To

analyze the input data, Definite Clause Grammar DCGs are used to represent the rules to perform the syntax analysis. Each

rule of a DCG expresses a possible form for a nonterminal, as a sequence of terminals with optional constraints on the

terminals and nonterminal. Nonterminal nodes in uppercase indicate constituents. A terminal node in lowercase indicates a

token that must occur in the input data. A terminal node can be a literal which is any string enclosed in a pair of quotes. A

constraint wrapped in braces places the conditions such as type checking on a terminal node. This tree representation will be

the input to the anatomy analysis part of the TUG specification. The idea of prototyping via Software transformations isn't

new. However, as automatic rapid prototyping approach should avoid a proto- type to be rederived from scratch whenever

there is a change in the specification. Also, the automated approach should allow developers to easily extend the functions of

the prototype manually in case the specification language doesn't support abstractions for features needed for demonstration. A

rapid prototyping approach via Software transformations is presented to achieve this goal. User requirement are first written

into specification in TUG. The specification needs not necessarily be complete, precise and correct corresponding to the user

requirements at the first attempt. However, the specification should comply with the syntax of the language in order to be

further processed. Next, a prototype in prolog is automatically derived from the specification. Via software transformations.

The prototype is then exercised by the specifier and the use to clarify the user requirements in the front- end of the Software

life cycle [4][5][6].

II. The Geoquorum – Approach
 In this paper the GeoQuorums approach has presented for implementing atomic read/write shared memory in mobile ad hoc

networks. This approach is based on associating abstract atomic objects with certain geographic locations. It is assumed that

the existence of Focal Points, geographic areas that are normally "populated" by mobile nodes. For example: a focal point may

be a road Junction, a scenic observation point [2]. Mobile nodes that happen to populate a focal point participate in

implementing a shared atomic object, using a replicated state machine approach. These objects, which are called focal point

objects, are prone to occasional failures when the corresponding geographic areas are depopulated. The Geoquorums algorithm

uses the fault-prone focal point objects to implement atomic read/write operations on a fault-tolerant virtual shared object. The

Geoquorums algorithm uses a quorum- based strategy in which each quorum consists of a set of focal point objects. The

quorums are used to maintain the consistency of the shared memory and to tolerate limited failures of the focal point objects,

which may be caused by depopulation of the corresponding geographic areas. The mechanism for changing the set of quorums

has presented, thus improving efficiency [7]. Overall, the new Geoquorums algorithm efficiently implements read/write

operations in a highly dynamic, mobile network. In this chapter, a new approach to designing algorithms for mobile ad hoc

networks is presented. An ad hoc network uses no pre-existing infrastructure, unlike cellular networks that depend on fixed,

wired base stations. Instead, the network is formed by the mobile nodes themselves, which co-operate to route communication

from sources to destinations. Ad hoc communication networks are by nature, highly dynamic. Mobile nodes are often small

devices with limited energy that spontaneously join and leave the network. As a mobile node moves, the set of neighbors with

which at can directly communicate may change completely. The nature of ad hoc networks makes it challenging to solve the

standard problems encountered in mobile computing, such as location management using classical tools. The difficulties arise

from the lack of a fixed infrastructure to serve as the backbone of the network. In this chapter developing a new approach that

allows existing distributed algorithm to be adapted for highly dynamic ad hoc environments one such fundamental problem in

distributed computing is implementing atomic read/ write shared memory [8]. Atomic memory is a basic service that facilitates

the implementation of many higher level algorithms. For example: one might construct a location service by requiring each

mobile node to periodically write its current location to the memory. Alternatively, a shared memory could be used to collect

real – time statistics. The problem of implementing atomic read/write memory is divided into two parts; first, we define a

static system model, the focal point object model that associates abstract objects with certain fixed geographic locales. The

mobile nodes implement this model using a replicated state machine approach. In this way, the dynamic nature of the ad hoc

network is masked by a static model. Moreover it should be noted that this approach can be applied to any dynamic network

that has a geographic basis. Second, an algorithm is presented to implement read/write atomic memory using the focal point

object model. The implementation of the focal point object model depends on a set of physical regions, known as focal points

[9].The mobile nodes within a focal point cooperate to simulate a single virtual object, known as a focal point object. Each

focal point supports a local broadcast service, LBcast which provides reliable, totally ordered broadcast. This service allows

each node in the focal point to communicate reliably with every operation completely. The focal broadcast service is used to

implement a type of a replicated state machine, one that tolerates joins and leaves of mobile nodes. If a focal point becomes

depopulated, then the associated focal point object fails. (Note that it doesn't matter how a focal point becomes depopulated, be

it as a result of mobile nodes failing, leaving the area, going to sleep. etc. Any depopulation results in the focal point failing).

The Geoquorums algorithm implements an atomic read/write memory algorithm on top of the geographic abstraction, that is,

on top of the focal point object model. Nodes implementing the atomic memory use a Geocast service to communicate with the

focal point objects. In order to achieve fault tolerance and availability, the algorithm replicates the read/write shared memory at

a number of focal point objects. In order to maintain consistency, accessing the shared memory requires updating certain sets

of focal points known as quorums. An important aspect of this approach is that the members of our quorums are focal point

81

Egyptian Computer Science Journal Vol.45.No.1 January 2021, ISSN-1110-2586

objects, not mobile nodes. The algorithm uses two sets of quorums (I) get-quorums (II) put- quorums with property that

every get-quorum intersects every put-quorum. There is no requirement that put-quorums intersect other put-quorums, or get-

quorums intersect other get-quorums. The use of quorums allows the algorithm to tolerate the failure of a limited number of

focal point objects. This algorithm uses a Global Position System (GPS) time service, allowing it to process write operations

using a single phase, prior single-phase write algorithm made other strong assumptions, for example: relying either on

synchrony or single writers. This algorithm guarantees that all read operations complete within two phases, but allows for
some reads to be completed using a single phase: the atomic memory algorithm flags the completion of a previous read or

write operation to avoid using additional phases, and propagates this information to various focal paint objects (see fig.1). As

far as we know, this is an improvement on previous quorum based algorithms. For performance reasons, at different times it

may be desirable to use different times it may be desirable to use different sets of get quorums and put-quorums [10]. For

example: during intervals when there are many more read operations than write operations, it may be preferable to use smaller

get- quorums that are well distributed, and larger put-quorums that are sparsely distributed. In this case a client can rapidly

communicate with a get-quorum while communicating with a put – quorum may be slow. If the operational statistics change, it

may be useful to reverse the situation.

 A. Mathematical Notation for Geoquorums Approach

- I the totally- ordered set of node identifiers.

- i0 є I, a distinguished node identifier in I that is smaller than all order identifiers in I.

- S, the set of port identifiers, defined as N<0× OP×I,

 Where OP= {get, put, confirm, recon- done}.

- O, the totally- ordered, finite set of focal point identifiers.

- T, the set of tags defined as R ≥0 × I.

- U, the set of operation identifiers, defined as R ≥0 × S.

- X, the set of memory locations for each x є X:

 - Vx the set of values for x

 - v0,x є Vx , the initial value of X

- M, a totally-ordered set of configuration names

- c0 є M, a distinguished configuration in M that is smaller than all other names in M.

- C, totally- ordered set of configuration identifies, as defined as:

 R ≥0 ×I ×M

- L, set of locations in the plane, defined as R× R

Fig.1 Notations Used in the Geoquorums Algorithm.

B. Variable Types for Atomic Read/Write object in Geoquorum Approach for Mobile Ad Hoc Network

 The specification of a variable type for a read/write object in geoquorum approach for mobile ad hoc network is presented

and a read/write object has the following variable type (see fig .2).

Put/get variable type 

State

Tag  T, initially< 0.i0>

Value  V, initially v0

Config-id  C, initially< 0, i0, c0>

Confirmed-set C T, initially Ø

Recon-ip, a Boolean, initially false

Operations

Put (new-tag, new-value, new-config-id)

If (new-tag> tag) then

Value ←new-value

Tag ← new-tag

If (new-config-id > config-id) then

Config-id ← new-config-id

Recon-ip ← true
Fig.2 A Read /Write Objects in the Application

C. Operation Manager

 In this section the Operation Manger (OM) is presented, an algorithm built on the focal/point object Model. As the focal

point Object Model contains two entities, focal point objects and Mobile nodes, two specifications is presented , on for the

objects and one for the application running on the mobile nodes [11][12] .

 1) Operation Manager Client: This automaton receives read, write, and recon requests from clients and manages quorum

accesses to implement these operations (see fig .3). The Operation Manager (OM) is the collection of all the operation manager

clients (OMi, for all i in I).it is composed of the focal point objects, each of which is an atomic object with the put/get variable

type.

82

Egyptian Computer Science Journal Vol.45.No.1 January 2021, ISSN-1110-2586

Signature:

Input:

Write (Val)i ,val  V

read ()i

recon (cid)I , cid  C

respond (resp) obj, P, resp responses (), obj  O, P = <*,*, i>  S

geo-update (t,L)i , t R≥0
 , L L

output:

write-ack ()i

read-ack (val)i ,val V

recon-ack (cid)i , cid  C

invoke (inv) obj, P, inv  invocations (),obj  O, P = <*,*,i>  S

Internal:

read-2 ()i

recon-2 (cid)i , cid  C

State:

Confirmed C T, a set of tag ids, initially Ø

Conf-id  C, a configuration id, initially <0, i0, c0>

Recon- ip, a Boolean flag initially false

Clock  R≥0, a time, initially 0

Ongoing - invocations C O× S a set of objects and ports initially Ø

Current-port-number  N >0, used to invoke objects, initially 1

Op, a record with the following components:

Type  {read, write, recon}, initially read

Phase {{idle, get, put}, initially idle

Tag  T, initially <0, i0>

Value  V, initially v0

Recon-ip, a Boolean flag, initially false

Recon-conf-id  C, a configuration id, initially <0, i0, c0>

Acc C 0, a set of data objects, initially Ø

Fig. 3 Operation Manager Client Signature and State for Node i in I, where  is the Put/Get Variable Type.

D. Focal Point Emulator Overview

 The focal point emulator implements the focal point object Model in an ad hoc mobile network. The nodes in a focal point

(i.e. in the specified physical region) collaborate to implement a focal point object. They take advantage of the powerful

LBcast service to implement a replicated state machine that tolerates nodes continually joining and leaving .This replicated

state machine consistently maintains the state of the atomic object, ensuring that the invocations are performed in a consistent

order at every mobile node [13]. In this section an algorithm is presented to implement the focal point object model. the

algorithm allows mobile nodes moving in and out of focal points, communicating with distributed clients through the geocast

service, to implement an atomic object (with port set q=s)corresponding to a particular focal point. We refer to this algorithm

as the Focal Point Emulator (FPE).fig .4 contains the signature and state of the FPE .the code for the FPE client . The FPE

client has three basic purposes. First, it ensures that each invocation receives at most one response (eliminating

duplicates).Second, it abstracts away the geocast communication, providing a simple invoke/respond interface to the mobile

node[14] [15]. Third, it provides each mobile node with multiple ports to the focal point object; the number of ports depends

on the atomic object being implemented. The remaining code for the FPE server is in fig .8.When a node enters the focal point,

it broadcasts a join-request message using the LBcast service and waits for a response. The other nodes in the focal point

respond to a join-request by sending the current state of the simulated object using the LBcast service. As an optimization, to

avoid unnecessary message traffic and collisions, if a node observes that someone else has already responded to a join-request,

and then it does not respond. Once a node has received the response to its join-request, then it starts participating in the

simulation, by becoming active. When a node receives a Geocast message containing an operation invocation, it resends it with

the lbcast service to the focal point, thus causing the invocation to become ordered with respect to the other LBcast messages

(which are join-request messages, responses to join requests, and operation invocations).since it is possible that a Geocast is

received by more than one node in the focal point ,there is some bookkeeping to make sure that only one copy of the same

invocation is actually processed by the nodes. There exists an optimization that if a node observes that an invocation has

already been sent with LBcast service, then it does not do so. Active nodes keep track of operation invocations in the order in

which they receive them over the LBcast service. Duplicates are discarded using the unique operation ids. The operations are

performed on the simulated state in order. After each one, a Geocast is sent back to the invoking node with the response.

Operations complete when the invoking node with the response. Operations complete when the invoking node remains in the

same region as when it sent the invocation, allowing the geocast to find it. When a node leaves the focal point, it re-initializes

its variables [16] [17].A subtle point is to decide when a node should start collecting invocations to be applied to its replica of

83

Egyptian Computer Science Journal Vol.45.No.1 January 2021, ISSN-1110-2586

the object state. A node receives a snapshot of the state when it joins. However by the time the snapshot is received, it might be

out of date, since there may have been some intervening messages from the LBcast service that have been received since the

snapshot was sent. Therefore the joining node must record all the operation invocations that are broadcast after its join request

was broadcast but before it received the snapshot .this is accomplished by having the joining node enter a "listening" state once

it receives its own join request message; all invocations received when a node is in either the listening or the active state are

recorded, and actual processing of the invocations can start once the node has received the snapshot and has the active status.

A precondition for performing most of these actions that the node is in the relevant focal point. This property is covered in

most cases by the integrity requirements of the LBcast and Geocast services, which imply that these actions only happen when

the node is in the appropriate focal point[2] [18].

Signature:

Input

Geocast-rcv (< invoke, inv, oid, Loc>) obj,i ,inv  invocations, oid U,loc L (i.e. oid: object identifier , loc: location)

Lbcast-rcv (<Join-req, jid >) obj,i , Jid  T (i.e. jid: join identifier)

Lbcast-rcv (<Join-ack, jid, v>) obj,I, Jid  T, vV

Lbcast-rcv (<invoke, inv, oid, loc>) obj, i, inv  invocations, oid U, loc L

Geo-update (l,t)obj,I ,l  L ,t  R>0

Output:

Geocast (<response, resp, oid, loc>) obj,i, resp Responses, oidU , locL

Lbcast (< Join-req, Jid>) obj, i, jid  T

Lbcast (< Join-ack, Jid, v>) obj, i, jid  T, v V

Lbcast (< invoke, inv, oid, loc>) obj, i, inv  invocations, oid  U, loc  L

Internal:

Join () obj,i

Leave () obj,i

Simulate-op(inv)obj,i , inv invocations.

State:

Fp-location 2L, constant, locations defining the focal point under consideration

Clock  R>0, the current time, initially 0, updated by the geosensor.

Location , L the current physical location, updater by the geosensor

Status {idle, joining, listening, active}, initially active if node is in FP-location and idle otherwise.

Join- id  T, unique id for current join request, initially <0, i0>.

Lbcast- queue, a queue of messages to be sent by the LBcast, initially Ø.

Geocast-queue, a queue of messages to be sent by the Geocast, initially Ø.

Answered-join-reqs set of ids of Join requests that have already been answered, initially Ø.

val V, holds current value of the simulated atomic object, initially v0.

Pending-ops, queue of operations waiting to be simulated, initially Ø.

Completed-ops, queue of operations that have been simulated, initially Ø.

Fig.4 FPE server signature and state for node i and object obj of variable type  = <V, v0, invocations, responses, δ >

III. A Specification in TUG
 TUG specification language consists of 3 parts: a name part where the title with input/ output parameters is given, on

analysis part where the input data is defined, and an anatomy part where the output data is generated. The name part contains a

module or schema title with input/ output parameters are enclosed in parentheses. The analysis part contains the rules for

analyzing the input data. To analyze the input data, Definite Clause Grammars (DCGS) are used to represent the rules to

perform the syntax analysis. Each rule of a DCG expresses a possible form for a non-terminal, as a sequence of terminals with

optional constraints on the terminals and non-terminals. Non terminal nodes in uppercase indicate constituents. A terminal

node in lowercase indicates a taken that must occur in the input data. A terminal node can be a literal which is any string

enclosed in a pair of quotes. A constraint wrapped in braces places the conditions such as type checking indicates a taken that

must occur in the input data. A terminal node can be a literal which is any string enclosed in a pair of quotes. A constraint

wrapped in braces places the conditions such as type checking on a terminal node. Table I includes all operators used in the

conditions. An input is parsed into a tree representation that takes the form of a prolog list with a node name acting as the

relationship symbol of the input data. This tree representation will be the input to the anatomy analysis part of the TUG

specification [19][20] [21].

84

Egyptian Computer Science Journal Vol.45.No.1 January 2021, ISSN-1110-2586

IV. Rapid Prototyping Process via Software Transformations

 The prototype serves as a basis for discussion to help the specifier and the user to read just the user requirements and

specifications. Feedback from the user is obtained to decide whether the change is minor or major. If the change is minor, A

Change Request Script (CRS) specifying the change is written to update the specification and the prototype. If a major change

is needed, the specifier may rewrite the specification and rederive a new prototype from the start. A major change may involve

the structure of the specification to be modified. This prototyping process continues until the requirements have been

thoroughly exercised and the user is satisfied with the demonstrated behavior of the prototype. The results of the prototype

evolution are a set of modular TUG specifications for the proposed system. In addition, a set of CRSs record the design

decisions made during the transformations [22].There is no existing specification language that can support abstractions for all

features of Software systems. Therefore, a specification language must make developers to easily extend and modify

prototypes (see fig.5). To support easy modifications to the prototype, the TUG specification language was designed to support

the construction of a specification in a structured manner with regular expression notations. The modules in a derived

prototype from the specification can be easily located, modified, or extended in terms of these regular expression notations.

The rapid prototyping approach using TUG can be incorporated into any Software development process. It is intended that

each evolution of the specification that is synthesized by the specifier should be formally recorded using TUG, and that the

prototype derived from the specification should be exercised with the users participating in the user requirements analysis

process. The specification can then be reasoned with and expected behavior can be validated. The benefits of rapid

prototyping have been identified to include [22][23]:-

• Rapid prototyping is available in the front end of the Software life cycle to allow early detection of errors.

• Unclear and imprecise user requirements can be clarified by rapid prototyping.

• Execution of the prototype supplements inspection and formal reasoning as means of analysis of the specification.

• The underlying theory of the TUG specification language is DCGs, which can be executed directly in the prolog

environment .There is a close correspondence between TUG and prolog, which makes the process of transformation

relatively mechanical. In this approach, DCGs are used as an intermediate form for aiding the transformation process.

Although DCGs are syntactic for prolog, a prototype in DCGs seams difficult to read, understand, and maintain.

• Whenever there is a change in the user requirements, there many are no need to rederive the prototype from scratch if the

change is trivial. ACRS is written to update the prototype only in response to the revised specification .A redervation of

prototype in prolog from the start is avoided is modified [23] [24].

• The rapid prototyping approach supports formal requirement specifications written in TUG.

• The prototype is exercised to demonstrate the system behavior in the prolog environment. A driver that reads in the input

data and then calls the main program with parameters needs to be constructed manually. The set of transformation rules

are given below. The conventions are:

a. C: is a finite set of condition tests and has the for

b. {C1, C2,….,Cn} with n ≥ 1 where ci is a TUG condition test;

c. Y is a finite set of dummy non terminal or terminal node;

d. Names of predicates in prolog are in all lowers case letters.

e. Names of variables in prolog are in all upper case letters.

f. Q is a finite set of prolog procedure calls and has the form

 {q1, q2…q n} with n ≥ 1 where qi is a prolog predicate for which a Prolog definition has been given, and. < > encloses

optional syntactic Items

85

Egyptian Computer Science Journal Vol.45.No.1 January 2021, ISSN-1110-2586

 Fig .5 Rapid Prototyping Cycle via Software Transformations

 The following four rules translate the analysis part of the TUG specification into DCGs. Each non-terminal node in the

analysis tree structures its subtrees according to one of the structure notations each structuring operation can be transformed

into a DCG form by applying the following four rules in straight forward manners[23][24][25].

|-def 1

α1

β1 where α is a nonterminal node

< {Φ1}>

86

A Write an initial

specification in

TUG

User requirements

Syntax check
Correct

?

Revise the specification

Construction a prototype

via a S.W transformations

A revised specification

Exercice the

prototype

Update prototype via

software transformation
Update

spécification

Syntax Check Write a CRS
User

specified

?

Yes

Specification

is completed

No A CRS

Revise the CRS A

 No Major

changes

No

Correct

?

Yes

The CRS

Egyptian Computer Science Journal Vol.45.No.1 January 2021, ISSN-1110-2586

β2

< { Φ2}>

…………..

βn

<{Φn}>

α  β1< { Φ1}>

α  β2< { Φ2}>

……………

α  βn< { Φn}>

 In rule1, a union nonterminal node α in the analysis tree indicates that α is one of the alternatives, β1, β2,….., βn. If βi is a

literal, there is no Φi associated with βi. Each translated DCG represents an alternative [9] [10].

&- def 2

α &

β1 where α is a nonterminal node

< {Φ1}> βi is a nonterminal

or terminal node with condition tests Φ i C

β2

<{Φ2}>

β n

<{ Φn}>

α β1<{ Φ1}> β2<{ Φ2}> …….. βn <{ Φn}>

In rule 2, α a concatenation nonterminal node α in the analysis tree indicates that & is a concatenation of β1, β2,….., β n. If βi is

a literal, there is no Φi associated with βi. Each translated DCG represents a concatenation form

*def 3

α *

β1 where α is a nonterminal node

< {Φ1}> β1 is a nonterminal

or terminal node with condition tests Φ i C

β2

< { Φ2}>

βn

<{Φn}>

α  []

α β1<{ Φ1}> β2<{ Φ2}> . .…. .…….. βn <{ Φn}> α

 In rule 3, a kleene closure nonterminal node α in the analysis tree indicates that α is a sequence of zero or more occurrence

of β1, β2,….., βn. If βi is a literal, there is no Φ associated with βi two translated DCGs represent a kleene closure form [5][11].

+ - def 4

α +

β1 where α is nonterminal node

<{ Φ1}> β i anonterminal or terminal node with condition tests Φi C

β2

< { Φ2}>

βn

<{Φn}>

α β1<{ Φ1}> β2<{ Φ2}> …….. βn <{ Φn}>

α β1<{ Φ1}> β2<{ Φ2}> …….. βn <{ Φn}> α

In rule 4, α a positive closure nonterminal node α in the analysis tree indicates that α is a sequence of one or more occurrences

of β1, β2... βn. If βi is a literal, there is no Φi associated with βi.. Two translated DCGs represent a positive closure form

[25][26].To demonstrate the use of transformation rules presented in this section, the application of Rules 1-4 to the analysis

tree of the related work approach specification produces the following results:

(1) SEQUENCE→UNSORTED- IDS

(2) SEQUENCE →SORTED- IDS

(3) UNSORTED→ List 1 +X{integer(X)}

 List 2+Y {integer(y)},

 Greater-than(X, Y)}

 Rest_of_elements

(4) SORTED →ASCENDING-SEQUENCE

9

87

Egyptian Computer Science Journal Vol.45.No.1 January 2021, ISSN-1110-2586

(5) ASCENDING_SEQUENCE→ Element {integer (element)}

(6) ASEDING_SEQENCE→ Element {integer (element)}

 ASCENDING-SEQUENCE

 The following four rules translate the anatomy tree of the specification into DCGs. The rules are similar to the rules for

translating the analysis tree. The difference is that we use the":- "symbol instead of symbol "". The use of the " " symbol

in the rules for the analysis part pf a TUG specification denotes a derivation of a tree, an involvement of pattern matching,

and an unification of variables with the input values in prolog and the use of the" :-" symbol in the rules for the anatomy part

of the specification perfumes the same operations. The uses of the " "and":-" symbols are just for the syntactic purpose. The

out puts of the rules for the analysis part of a TUG specification produce a tree unified with the input values that is the input to

the rules for the anatomy part of the specification. The rules for the anatomy part of a TUG specification reads in the tree and

performs exact unifications on the variables to produce outputs Another difference is that dummy nodes appear in the rules.

The reason for having dummy nodes is that often only the parts of tree are referenced in the anatomy tree of the specification.

The remaining unreferenced parts of the tree still need to be unified in the course of patter matching. Dummy nodes are

obtained by referring back to the analysis tree of the specification [17] [19].

 | - def 5

α |

 β 1 where α is a nonterminal node

 β 2 β i is a nonterminal node

………..

β n

ε: -Y1 where ε is uppercase using α

ε: -Y2 where Yi is uppercase using β i

………….

ε: -Yn

In Rule 5, a union nonterminal node α in the anatomy tree indicates that α is one of the alternatives, β1, β2,…, β n .Each

translated DCG represents an alternative.

&-def 6

α &

 β 1 where α is a nonterminal node

β 2 , β i is a nonterminal node or statement

………
β n

ε:-Y1<{Ψ1}> Y2<{Ψ2}>…… Yn<{ Ψn}> Where Ψ1 C Y

ε is uppercase using α

Yi is uppercase using β i if β i is a nontreminal node;

Otherwise Yi = β i

In Rule 6, a concatenation nonterminal node α in the anatomy tree indicates that α is a concatenation of β1, β2,…, β n. The

translated DCG represents a concatenation form.

* -def 7

α *

β 1 where α is a nonterminal node

β 2 β i is a nonterminal node ,terminal node, or statement

……….

β n

ε:- []

ε:- Y1<{Ψ1}> Y2{Ψ2}>…….Yn<{Ψn}> ε where Ψ1 C Y

ε is uppercase using α

Yi is uppercase using β i if β i is a nontreminal node;

Otherwise Yi = β i

In Rule7, a kleene closure nonterminal node α in the anatomy tree indicates that α is a sequence of zero or more occurrence of

β1, β2,…, β n . Two translated DCGs represent a kleene closure form.

+-def 8

α +

β 1 where α is a nonterminal node

β 2 β i is a nonterminal node ,terminal node, or statement

……

β n

ε:- Y1<{Ψ1}> Y2{Ψ2}>…….Yn<{Ψn}>

ε:- Y1<{Ψ1}> Y2{Ψ2}>…….Yn<{Ψn}> ε

88

Egyptian Computer Science Journal Vol.45.No.1 January 2021, ISSN-1110-2586

Where Ψ1 C Y

ε is uppercase using α

Yi is uppercase using β i if β i is a nontreminal node;

Otherwise Yi = β i

In Rule 8, a positive closure nonterminal node α in the anatomy tree indicates that α is a sequence of one or more occurrences of

β1, β2,…, β n .

Two translated DCG represent a positive closure form. The application of Rules 5-8 to the anatomy tree of the problem

specification produces the following results

(7) SEQUENCE:- UNSORTED

(8) SEQENCE:-SORTED

 (9)UNSORTED: -T-L1=Y:: List 2

T-L2=X:: rest_of_elements

T-L=List 1< >T-L1< >T-L2

Call IDS_sort (T-L)

 (10) SORTED: - ASCENDING_SEQUENCE

 (11) ASCENDING_SEQUENCE:-Output element

 Output ' '

 (12) ASCEDING_SEQENCE:-Output element

Output ' '

ASSCENDING_SEQUENCE

V. A TUG Specification for Implementing Atomic Read/Write Shared Memory in Mobile Ad Hoc

Networks Application
 This section will illustrates the usage of TUG for implementing atomic read/ write shared memory in mobile ad hoc

networks. A specification in TUG is formalized incrementally in a modular and Top-down manner the example also illustrates

how the language supports module independence via the language patterns. The Geoquorums approach, for implementing

atomic read/ write shared memory in mobile ad hoc networks. This approach is based an associating abstract atomic object,

with certain geographic locations. We assume the existence of local points, geographic areas that are normally "populated" by

mobile nodes. The Geoquorum algorithm uses the fault –prone focal point objects to implement atomic read/write operations

on fault – tolerant virtual shared object. Te Geoquorums algorithm uses a quorum- based strategy in which each quorum

consists of a set of focal point objects. The quorums are used to maintain the consistency of the shared memory and to tolerate

limited failures of the focal point objects which may be caused by depopulation of the corresponding geographic areas

.Overall, the new geoquorums algorithm efficiently implements read and write operations in a highly dynamic, Mobil network.

A. A First Attempt at the Specification

 MODULE a_ listing_ of _transitions

 (in: TRANSITION_TYPE)

ANALYSIS

TRANSITION _TYPE &

TRANSITIONS *

"Put"

"get"

"confirm"

"config"

"reconfig"

END OF ANALYSIS"

ANATOMY

Transition_ type&

Transition*

Output n1

Output "put"

Output "get"

Output "confirm"

Output "config"

Output "reconfig"

END OF ANATOMY

END OF MODULE a_ Listing_ of_ transitions

B. The Application of Transformation Rules to the Above Specification Module Results

In the Following Prototype in Prolog:
Transition_ type (transition_ type

(TRANSITION))

89

Egyptian Computer Science Journal Vol.45.No.1 January 2021, ISSN-1110-2586

Transition (TRANSITION).

Transition (Transition ([]))

 [].

Transition (transition ("put", "get", "confirm", "config", "reconfig")) 

["put"],

["get"],

["confirm'],

["config"],

["reconfig"]

Transition (TRANSITION).

Transition_ type (transition_ type

((TRANSITION)):-

Transition (REANSITION).

Transition (Transition ([])).

Transition (Transition("put", "get", "confirm", "config", "reconfig")) :-

n1,

Write ("put", "get", "confirm", "config", "reconfig")),

 Transition (TRANSITION).

C. The Following CRS is Further Refinement on Each Invocation

Replace TRANSITION* under TRANSITION _Type &

With

VARIABLE_TYPE_TRANSITION.

"put_ invocation"

"get_ invocation"

"confirm_ invocation"

"config _invocation"

"reconfig_ invocation"

Replace Transition* under transition_ type &

With

Variable_Type_Transition |

Variable Transition &

Output n1

Output "put _ invocation"

Output" get _ invocation"

Output "confirm – invocation"

Output "config – invocation"

Output" reconfig – invocation"

D. A CRS for This Refinement is shown below

Replace PUT_INVOCATION_SECTIONS* under PUT_ INVOCATION

With

Put_ invocation

{new_value (put_invocation)

New_tag (put_ invocation)

New_config_id (put_ invocation)}

"get- invocation".

ReplaceGET_INVOCATION_SECTIONS*underGET_ INVOCATION & with

get_invocation

{new_config_id (get_invocation)}

"get_invocation"

At this stage, the application of transformation rules to the above two CRSs result in the following Prolog to update the

prototype.

Transition_Type (transition_type (TRANSITION)) →

transition (TRANSITION).

transition (transition ([])) → []

transition (transition(PUT_INVOCATION,GET_INVOCATION, CONFIRM_INVOCATION, CONFIG_ INVOCATION,

RECONFIG_INVOCATION)) →

put_invocation (PUT_INVOCATION),

(GET_INVOCATION).

transition (TRANSITION)

Variable_type_transition(put_invocation (PUT_INVOCATION)) →

90

Egyptian Computer Science Journal Vol.45.No.1 January 2021, ISSN-1110-2586

put_invocation (PUT_INVOCATION).

Variable_type_transition(get_invocation (GET_INVOCATION)) →

get_invocation (GET_INVOCATION).

put_invocation('put_invocation_separator, PUT_INVOCATION_SECTION)) →

['put_invocation_separator'],

put_invocation_section (PUT_INVOCATION_SECTION).

put_invocation_section ([])).

put_invocation_section(put_invocation_section(PUT_INVOCATION,'put_invocation_separator',

PUT_INVOCATION_SECTION)) →

[PUT_INVOCATION],

{put_ack_response (PUT_INVOCATIO, NEW_VALUE, NEW_TAG,

NEW_CONFEG_ID),

Length (new_config_id >config_id)

[put_invocation→ PUT_ACK_RESPONSE],

Put_invocation_section (PUT_INVOCATION_SECTION).

Transition_type (transition_type (TRANSITION)): -

transition (TRANSITION)

transition (transition ([])).

Transition(transition(PUT_INVOCATION,GET_INVOCATION,CONFIG_INVOCATION,RECONFIG_DONE

_INVOCATION)): -

get_invocation (GET_INVOCATION),

transition (TRANSITION).

Get_invocation (get_invocation (GET_INVOCATION)):-

get_invocation (GET_INVOCATION).

confirm_invocation (confirm_ invocation (CONFIRM- INVOCATION)):

confirm_ invocation (CONFIRM_ INVOCATION).

get_invocation(get_invocation ('initial_get_invocation_separator',

GET_INVOCATION_SECTION)):-

write ('get_invocation'),

write ('put_invocation'),

write ('config_invocation'),

write ('reconfig _done_invocation'),

confirm_invocation(confirm_invocation('new_tag',

CONFIRM_INVOCATION_SECTION)): -

nl,

write ('put_invocation'),

write ('get_invocation'),

write ('config_invocation'),

write ('recon_done_invocation'),

D. The Further Refinement

Replace 'put_invocation' under

NEW_CONFIG_ID & with

PUT_ACK_RESPONSE

Stop &

'Stop'

' '

replace 'get_invocation' under

NEW_CONFIG_ID & with

GET_ACK_RESPONSE

Stop&

'Stop'

' '

replace 'config_invocation' under

NEW_TAG & with

CONFIG_ACK_RESPONSE

Stop&

'Stop'

' '

replace 'recon_done_invocation' under

NEW_CONFIG_ID & with

91

Egyptian Computer Science Journal Vol.45.No.1 January 2021, ISSN-1110-2586

RECON_DONE _ ACK

Stop&

'Stop'

' '

replace transition_ type & with

output 'transition Analysis'

output nl

transition*

output 'transition:'

output 'put_invocation'

output 'put _ ack _ response'

output 'get_invocation'

output 'get _ ack _ response'

output ' . '

output nl

config_invocation &

output ' config_invocation'

output ' config _ ack _ response'

output ' , '

output ' recon_done _ invocation'

output ' recon_done _ ack'

output ' . '

output n1

After a successive of refinements to the original specification, the final complete specification for implementing atomic

read/write shared memory in mobile ad hoc networks is shown below.

MODULE a _ Listing _ of _ Transitions

(in: TRANSITION _ TYPE)

ANALYSIS

TRANSITION _ TYPE &

TRANSITION*

PUT_INVOCATION |

NEW_CONFIG_ID&

PUT_ACK_RESPONSE

Stop&

'Stop'

Get_ INVOCATION |

NEW_CONFIG_ID&

GET_ACK_RESPONSE

Stop&

'Stop'

' '

CONFIG_INVOCATION |

NEW_TAG&

CONFIG_ACK_RESPONSE

Stop&

'Stop'

 ' '

RECONFIG_DONE_ INVOCATION |

NEW_CONFIG_ID&

RECON_DONE_ACK

Stop&

'Stop'

' '

END OF ANALYSIS

transition type &

output' Transition Analysis'

output nl

transition*

output' transition:'

put _invocation |

92

Egyptian Computer Science Journal Vol.45.No.1 January 2021, ISSN-1110-2586

new_config_id &

output 'put_ invocation'

output 'put_ack_response'

output '. '

output nl

get _ invocation |

new_config_id &

output 'get_ invocation'

output 'get_ack_response'

output ', '

config- invocation |

new-tag &

output 'config- invocation'

output 'config -ack-response'

output ' , '

recon - done- invocation |

new-config –id &

output ' reconfig - done- invocation'

output ' recon - done- ack'

output '.'

output nl

END OF ANATOMY;

END OF MOUDULE a- Listing-Of- Transitions.

VI. Conclusions and Future Work
 An approach was developed to support rapid prototyping via software transformations by deriving a prototype in prolog

from a specification in TUG. i didn't directly use the prolog language to specify user requirements, programming languages

more or less concentrate on how rather than what and are generally unsuitable for specification purposes. In addition, in a

specification in prolog lacks modularity in contrast to a specification in TUG. Since the main purpose of a specification is to

aid the understanding of the user requirements, it is useful if a specification can be read and understood. Modularity helps

specifiers to read and maintain in a manageable way. TUG provides modularity to help specifiers to specify a system in a

hierarchical manner. A set of modules are specified and then composed into a system. The system is tested in pieces

corresponding to the modular specification .In contrast to a specification in TUG, a specification in prolog is relatively difficult

to maintain. Rapid prototyping via software transformations helps to build prototypes automatically from specifications. In this

paper, a formal method with TUG was presented to support the rapid prototyping via software transformations process in

which a prototype can be built quickly and cheaply. Automation of the application of software transformations reduces the

labor intensity of developing prototypes manually. Rapid prototyping via software transformations also provides support for

prototype modifications. The rapid prototyping approach supports prototype evolution by avoiding complete retransformation

of the prototype from the start whenever there is a change made to the specification. To avoid complete retransformation, a

CRS is written to update the prototype only in response to the minor changes to the specification, involving the nodes to be

modified, extended, relaxed, or refined. If a major change is needed, the specification may need to be rewritten and a new

prototype may be derived from the start. A major change may involve the structure of the specification to be modified. Like

other formal specification languages, the TUG specification language may not provide enough abstractions for modeling some

properties of software systems such as non- functional properties. Therefore, the geoquorum approach for implementing

atomic read/write shared memory in mobile ad hoc networks encourages specifiers to manually add additional code to the

derived prototype for demonstrating such kind of properties of systems. The rapid prototype approach supports the quick

construction of a prototype with a high degree of module independence. Module independence has a particular importance in

this approach because of the need for modifications to the prototype. It remains an open question to determine how to choose a

good set of focal points, how to construct a map of focal points in a distributed fashion, and how to moodily the set of focal

points dynamically. Overall, the FPO Model will significantly simplify the development of algorithms for mobile, in highly

dynamic networks. Finally, there exist many techniques to do these phases of software development lifecycle for any

application.

References
1. J. Weng, C. Miao, A. Goh, "Protecting Online Rating Systems from Unfair Ratings," International Conference on Trust,

Privacy and Security in Digital Business, pp. 50–59, 2005.

2. S.I. Ahamed, M.M. Haque, M.E. Hoque, F. Rahman, N. Talukder, "Design, analysis, and deployment of formal trust

model (FTM) with trust bootstrapping for pervasive environments," Journal of Systems and Software, vol. 83, No. 2, p.

253–270, 2010.

3. N. Iltaf, A. Ghafoor, U. Zia, " A mechanism for detecting dishonest recommendation in indirect trust computation,"

EURASIP Journal on Wireless Communications and Networking, vol. 189, 2016.

93

Egyptian Computer Science Journal Vol.45.No.1 January 2021, ISSN-1110-2586

4. Barmade , M.M. Nashipudinath, "An efficient strategy to detect outlier transactions," International Journal of Soft

Computing and Engineering (IJSCE), vol. 6, no. 174-178, p. 3, 2014.

5. Z. He, X. Xu, J.Z. Huang, S. Deng, "Fp-outlier: frequent pattern based outlier detection," Computer Science and

Information Systems, vol. 2, no. 1, pp. 103-118, 2015.

6. F. Hendrikx, K. Bubendorfer, R. Chard, "Reputation systems: a survey and taxonomy," Journal of Parallel and Distributed

Computing, vol. 75, pp. 184-197, 2015.

7. Dobson, A. J., and A. G. Barnett. , An Introduction to Generalized Linear Models, Chapman and Hall/CRC. ,Taylor &

Francis Group, 2018.

8. A . Manna, A . Sengupta, C. Mazumdar, "A survey of trust models for enterprise information systems," Procedia Comput.

Sci., vol. 85, p. 527– 534, 2016.

9. R. Malaga, "Web-based reputation management systems: problems and suggested solutions," Electronic Commerce

Research, p. 403–417, 2017.

10. G. D’Angelo, S. Rampone, F. Palmieri, "An artificial intelligence-based trust model for pervasive computing,"

Proceedings of the 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), p.

701–706, 2015.

11. G. D’Angelo, S. Rampone, F. Palmieri, "Developing a trust model for pervasive computing based on apriori association

rules learning and Bayesian classification," Soft Comput., p. 6297–6315, 2017.

12. Gianni D’Angelo , Francesco Palmieri , Salvatore Rampone, "Detecting unfair recommendations in trust based pervasive

environments," Information Sciences, -Vol 17,no.8,pp. 113-126,2019

13. J. Weng, C. Miao, A. Goh, "Protecting Online Rating Systems from Unfair Ratings," International Conference on Trust,

Privacy and Security in Digital Business, p. 50–59, 2005.

14. C.Chiang,J.E.Urban, "Validating Software Specification against User Claims", Proceedings of the Twenty-Third Annual

International Computer Software and Applications Conference _OMPSAC 2010),2010,PP:104-109.

15. DOLEV, S., Gilbert, S.LYNCH, N.A., SHVARTSMAN, A.A., Welch, J.L.: " Geoquorums: Implementing Atomic

Memory in Mobile Ad Hoc Networks". In: Proceeding of the 17th International Conference on Distributed Computing, PP.

306-320 (2018).

16. Haas, Z.J., Liang, B.: "Ad Hoc Mobile Management with Uniform Quorum Systems". IEEE/ACM Transactions on

Networking 7(2), PP: 228-240 (2000).

17. B.CMoszkowski,"A Complete Axiomatization Of Interval Temporal Logic With Infinite Time ", Proceedings of the 15 th

Annual IEEE Symposium on Logic in Computer Science_(LICS,00),JUNE(2000),26-29,California ,2017, PP:242-249.

18. Chia-Chu Chiang," Automated Rapid Prototyping of TUG Specifications Using Prolog", Proceedings of: Information and

Software Technology 46(2014), PP: 857-873.

19. O.J.Dahl, O. Owe, Formal Methods and the RMODP, Research Report No.261, Department of Information, University of

Oslo, Norway, 2000.

20. IEEE, IEEE standard for a High Performance Serial Bus, Standard 1394, August 1995.

21. M.Liu Yanguo, Proof Patterns for UMI-Based Verification, Master Thesis ECE Department, University of Victoria,

Victoria, Canada, October 2002.

22. I.Traore, D.Aredo, H.Ye," An Integrated Framework for Formal Development of Open Distributed Systems," In:

Information and Software Technology 46 (2004) 281-286.

23. El-Far, Automated Construction of Software Behavior Models, Master's Thesis, Florida Institute of Technology

Melbourne, Fl, 1999.

24. G. Carullo, A. Castiglione, A. De Santis, F. Palmieri, "A triadic closure and homophily-based recommendation system for

online social networks," World Wide Web, vol. 18, no. 6, pp. 1579–1601, 2015.

25. Tharwat, "Classification assessment methods," Applied Computing and Informatics, vol. 17, no. 1, pp. 168-192, 2019.

94

