
Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

Stepwise Refinement for A Wireless Networks Using the Proof

Logic.

Reham.A.Shihata

PhD in Computer Science, EL Menoufia University –Egypt. Software Consultant

in Egyptian Syndicate of Programmers & Scientists.

anwerreham@yahoo.com

Abstract: The Geoquorum approach for implementing atomic read/write shaved memory in mobile ad hoc networks,

this problem in distributed computing is revisited in the new setting provided by the emerging mobile computing

technology. A simple solution tailored for use in ad hoc networks is employed as a vehicle for demonstrating the

applicability of formal requirements and design strategies to the new field of mobile computing. The approach of this

paper is based on well understood techniques in specification refinement, but the methodology is tailored to mobile

applications and help designers address novel concerns such as logical mobility, the invocations, specific conditions

constructs. The proof logic and programming notation of mobile UNITY provide the intellectual tools required to

carryout this task. Also, the quorum systems are investigated in highly mobile networks in order to reduce the com-

munication cost associated with each distributed operation.

Keywords: Formal Specification, Mobility, Mobile Ad Hoc Networks, the Quorum Systems.

1. Introduction

 Formal notations led to the development of specification languages; formal verification contributed to the application of

mechanical theorem proffers to program checking; and formal derivation is a class of techniques that ensure correctness by

construction, has the potential to reshape the way software will be developed in the future program derivation is less costly

than post factum verification, is incremental in nature, and can be applied with varying degrees of rigor in conjunction with or

completely apart from program verification. More significantly, while verification is tied to analysis and support tools, program

derivation deals with the very essence of the design process, the way one thinks about problems and constructs solutions [1][2].

An initial highly- abstract specification is gradually refined up to the point when it contains so much detail that writing a correct

program becomes trivial. Program refinement uses a correct program as starting point and alters it until a new program satisfying

some additional desired properties is produced. Mobile systems, in general, consist of components that may move in a physical

or logical space if the components that move are hosts, the system exhibits physical mobility. If the components are code

fragments, the system is said to display logical mobility, also referred to as code mobility. Code on demand, remote evaluation,

and mobile agents are typical forms of code mobility. Of course, many systems entail a combination of both logical and physical

mobility (as explained in our related work). The potentially very large number of independent computing units, a decoupled

computing style, frequent disconnections, continuous position changes, and the location – dependent nature of the behavior and

communication patterns present designers with unprecedented challenges[2][3]. While formal methods may not be ready yet to

deliver complete practical systems, the complexity of the undertaking clearly can benefit enormously from the rigor associated

with a precise design process, even if employed only in the design of the most critical aspects of the system. The attempt to

answer the question raised earlier consists of a formal specification and derivation for our communication protocol for ad hoc

mobile systems, carrying out this exercise by employing the mobile unity proof logic and programming notation. Mobile unity

provides a notation for mobile system components, coordination language for expressing interactions among the components

and an associated proof Logic. This highly modular extension of the UNITY model extends both the physical and logical

notations to accommodate specification of and reasoning about mobile programs that exhibit dynamic reconfiguration. Ensuring

the availability and the consistency of shared data is a fundamental task for several mobile network applications. For instance,

nodes can share data containing configuration information, which is crucial for carrying out cooperative tasks. The shared data

can be used, for example, to coordinate the duty cycle of mobile nodes to conserve energy while maintaining network

connectivity [4]. The consistency and the availability of the data plays a crucial role in that case since the loss of information

regarding the sleep/awake cycle of the nodes might compromise network connectivity. The consistency and availability of the

shared data is also relevant when tracking mobile objects, or in disaster relief applications where mobile nodes have to

coordinate distributed tasks without the aid of a fixed communication infrastructure. This can be attained via read/write shared

memory provided each node maintains a copy of data regarding the damage assessment and dynamically updates it by issuing

write operations. Also in this case it is important that the data produced by the mobile nodes does not get lost, and that each

node is able to retrieve the most up-to-date information. Strong data consistency guarantees have applications also to road

safety, detection and avoidance of traffic accidents, or safe driving assistance [5][6].The atomic consistency guarantee is widely

78

mailto:anwerreham@yahoo.com

Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

used in distributed systems because it ensures that the distributed operations (e.g., read and write operations) performed on the

shared memory are ordered consistently with the natural order of their invocation and response time, and that each local copy

is conforming to such an order. Intuitively, this implies that each node is able to retrieve a copy showing the last completed

update, which is crucial in cooperative tasks. However, the implementation of a fault-tolerant atomic read/write shared memory

represents a challenging task in highly mobile networks because of the lack of a fixed infrastructure or nodes that can serve as

a backbone. In fact, it is hard to ensure that each update reaches a subset of nodes that is sufficiently large to be retrieved by

any node and at any time, if nodes move along unknown paths and at high speed. The focal point model provides a first answer

to this challenge since it masks the dynamic nature of mobile ad hoc networks by a static model. More precisely, it associates

mobile nodes to fixed geographical locations called focal points. According to this model, a focal point is active at some point

in time if its geographical location contains at least one active mobile node. As a result, a focal point becomes faulty when each

mobile node populating that sub-region leaves it or crashes. The merit of this model is to study node mobility in terms of failures

of stationary abstract points, and to design coordination protocols for mobile networks in terms of static abstract nodes [7] [8].

2. Related Work

 In this section, the quorum systems in highly mobile networks are investigated in order to reduce the communication cost

associated with each distributed operation. Our analysis is driven by two main reasons: (1) guarantee data availability, and (2)

reduce the amount of message transmissions, thus conserving energy. The availability of the data is strictly related to the liveness

and response time of the recovery protocol since the focal point failures occur continuously, as they are triggered by the motion

of nodes. Quorum systems are well-known techniques designed to enhance the performance of distributed systems, such as to

reduce the access cost per operation and the load. A quorum system of a universe U is a set of subsets of U, called quorums,

such that any pair of quorums does intersect. In this paper, the analyzing of quorum systems is in condition of high node

mobility. Note that the universe U of our quorum systems is (Focal Point) FP, a set of n stationary focal points. This choice

allows us to study node mobility in terms of continuous failures of stationary nodes. In the next Section, two examples of

quorum systems are analyzed and show that they are not always able to guarantee data consistency and availability under the

mobility constraints, and provide in Lemma 1 a condition on the size of the minimum quorum intersection that is necessary to

guarantee these properties [9][10].

2.1 Quorum Systems under Mobility Model

 This section shows here that quorums proposed for static networks are not able to guarantee data consistency and availability

if assumptions A1 and A2 hold, because the minimum quorum intersection is not sufficiently large to cope with the mobility of

the nodes. In fact, since read/write operations are performed over a quorum set, in order to guarantee data consistency each read

quorum must intersect a quorum containing the last update. We show that there are scenarios that invalidate this condition in

case of quorum systems Qg with non-empty quorum intersection, and in case of dissemination quorum systems Qd with

minimum quorum intersection equal to f + 1, where f is the maximum number of failures [11][12].

 2.1.1 Generic Quorum System

 It is a set of subsets of a finite universe U such that, any two subsets (quorums) intersect (consistency property) and, there

exists at least one subset of correct nodes (availability property). The second condition ensures data availability and poses the

constraint f < (n/2). In our system model where nodes continuously fail and recover, this condition is not sufficient to guarantee

data availability. For instance, in an implementation of a read/write atomic memory based on Qg, the liveness of the read protocol

can be violated since it terminates only after receiving a reply from a full quorum of active focal point. Therefore, since the

recovery operation involves a read operation, data can become unavailable [13][14].

 2.1.2 Dissemination Quorum Systems

 They satisfy a stronger consistency property, but insufficient if failures occur continuously. An f-fail-prone system ß C 2U of

U is defined as a set of subsets of faulty nodes of U none of which is contained in another, and such that some B  ß contains

all the faulty nodes (whose number does not exceed f).

Definition 1. A dissemination quorum system Q d of U for a f -fail-prone system ß, is set of subsets of U with the following

properties:

 (i) | Q1 ∩ Q2 | ¢ B √ Q1 , Q2  Q d, √ B  ß

 (ii) √ B  ß э Q  Q d : Q ∩ B = Ø.

Dissemination quorum systems tolerate less than n/3 failures. Unfortunately, since in our system model an additional focal point

might fail between the invocation and the response time of a distributed operation, more than f focal points in a quorum set can

be non-active at the time they receive the request. As a result, data availability can be violated. The following lemma provides

a condition on the minimum quorum intersection size (lower bound) that is necessary to guarantee data consistency and

availability under our system model, provided nodes fail and recover [15].

79

Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

Lemma 1. An implementation φ of a read/write shared memory built on top of a quorum system δ. of a universe FP of stationary

nodes that fail and recover according to assumptions A1, A2 guarantees data availability only if |Q1 ∩ Q2| > f+ 1 for any Q1 ,

Q2  Q. It ensures atomic consistency only if |Q1 ∩ Q2 > f+ 2 for any Q1 , Q2  Q.

2.2The MDQ Quorum Systems

This section introduces here a new class of quorum systems, called Mobile Dissemination Quorum system (MDQ) that satisfies

the condition in Lemma 1. Definition 2. A MDQ system Q m of FP is a set of subsets of FP such that |Q1 ∩ Q2|> f + 2 for any

Q1 , Q2  Q. Note that in contrast with Q g the liveness of the distributed operations performed over a quorum set is guaranteed

by the minimum number of alive nodes contained in any quorum. As a result, in case of failures the sender does not need to

access another quorum in order to complete the operation. This improves the response time in case of faulty nodes and reduces

the message transmissions. Let us consider now the following MDQ system:

Qopt = Q : (Q C FP) ^ (| Q | =

Lemma 2. Qopt is a MDQ system and f ≤ n - 3.

Proof: Since |Q1 U Q2| = |Q1| + |Q2| - |Q1 ∩ Q2| for any

And |Q1 U Q2| ≤ n, then |Q1 ∩ Q2| ≥ n+f+3-n.

In addition, Q opt tolerates up to n — 3 failures since the size of a quorum cannot exceed n, that is

This implies (f+3-n) / 2 ≤ 0 note that Q opt is highly resilient (in the trivial case f = n -3, Q opt = {U}). Clearly, there is a trade-off

between resiliency and access cost since the access cost per operation increases with the maximum number of failures.

Moreover, our assumption of connectivity among active focal points becomes harder to guarantee as f becomes larger. It is

important to note that the minimum intersection size between two quorums of Q opt is equal to f + 3. We prove in the following

section that there exists an implementation of atomic memory built on top of Q opt This shows that f + 3 is the minimum quorum

intersection size necessary to guarantee data consistency and data availability under our mobility model. Therefore, Q opt is

optimal in the size of the minimum quorum intersection, that is in terms of message transmissions since the sender can compute

a quorum consisting of its closest nodes. This is particularly advantageous in sensor networks because

it can lead to energy savings [16][17].

2.3 An Implementation of Read/Write Atomic Memory

In this section, the Q opt is the quorum system with minimum intersection size f+3 that is able to guarantee data consistency and

availability under our system model and mobility constraints. We prove that by showing that there exists an implementation φ

of atomic read/write memory built on top of Q opt. Our implementation consists of a suite of read, write and recovery protocols

and built on top of the focal points and the Qbcast abstraction [18][19].

 2.3.1 The Qbcast Service

 We say that a focal point Fi is faulty at time t if focal point region Gi does not contain any active node at time t or Fi is not

connected to a quorum of focal points. In our implementation each read, write and recovery request is forwarded to a quorum

of focal points. This task is performed by the Qbcast service. It is tailored for the MDQ system and designed for hiding lower

level details. Similarly to Qbcast guarantees reliable delivery. It is invoked using interface qbcast (m), where m is the message

to transmit containing one of these request tags write, read, confirm. The notation {si}i  Q qbcast (m, Q denotes the Qbcast

invocation over quorum Q, {si} i  Q the set of replies, where Q C Q. We call the subset Q the reply set associated with request

m. This set plays a crucial role to prove data availability and atomic consistency. Upon receiving a request m, Qbcast computes

a quorum Q  Qopt and transmits message m to each focal point in Q. It is important to note that qbcast (m) returns only if the

node receives within T time units at least |Q| — (f + 1) replies from Q. If this does not occur, it waits for a random delay and

retries later since if this happens the focal point is faulty by our definition. Note that if read (or write) operations occur more

frequently than write (or read) operations, we can reduce message transmissions by distinguishing between read and write and

making read (or write) quorums smaller. However, for simplicity of presentation we do not distinguish between read and write

quorums [20] [21].

QQQ
opt,2

,
1



n+

f+3

2

80

n
fn








 ++

2

3








 ++

2

3fn

Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

 2.3.2 Protocols

 The high level description of the read/write/ recovery protocols is illustrated in Fig.1. Each mobile node maintains a copy

of the state s associated with the shared variable x, which is a compound object containing the value s.val of x, a timestamp s.t

representing the time at which a node issued update s.val, and a confirmed tag that indicates if s.val was propagated to a quorum

of focal points. Each node can issue write, read and recovery operations. A new state is generated each time a node issues. a

write operation.

 Fig.1 Write / Read/Recovery Protocols.

2.3.3 Write Protocol

 A node C requesting a write v computes a new state s consisting of value v, the current timestamp, tag unconfirmed, and a

random identification rand. It transmits its update to a quorum of focal points via the Qbcast service by invoking qbcast (<write,

s>) and successively qbcast (< confirm, s>) to make sure that a quorum of focal points received such an update. Upon receiving

a write request, each non-faulty focal point (including recovering) replaces its state with the new state s only if the associate

timestamp s.t is higher than the timestamp of its local state, and sets its write tag to unconfirmed. This tag is set to confirmed

upon receiving the confirm request sent in the second phase of the write protocol, or sent in the second phase of the read protocol

in case the node that issued the write operation could not complete the write operation due to failure[22][23].

 2.3.4 Read Protocol

 In the read protocol, a node C invokes qbcast (<read>), which forwards the read request to a quorum Q of focal points.

Each non-faulty focal point in Q replies by sending a copy of its local state s. Upon receiving a set of replies from the Qbcast

service, node C computes the state with highest timestamp and returns the corresponding value. If the tag of s is equal to

unconfirmed, it sends a confirm request. This is to guarantee the linearizabitity of the operations performed on the shared data

in case a write operation did not complete due to client failure [24].

 2.3.5 Recovery Protocol

 It is invoked by a node C upon entering an empty region Gi. More precisely, C broadcasts a join request as soon as it enters

a new focal point region and waits for replies. If it does not receive any reply within 2d time units, where d is the maximum

transmission delay, it invokes the recovery protocol which works in the same way as the read protocol [24][25].

2.4 Analysis

 In this section, the key steps to prove the atomic consistency and data availability of the implementation presented in this

paper is shown.

A. Data Availability

 The availability of the data is a consequence of our failure model and of the Qbcast service. The following lemmas are useful

to prove it and will be also used in showing atomic consistency [26].

Lemma 3. The Qbcast service invoked by an active focal point terminates within Τ time units since the invocation time.

Proof: This is true since an active focal point or is able to communicate with a quorum of focal points because of Definition 2,

and because at most f + 1 focal points in Q can be faulty when the request reaches their focal point regions. In fact, because of

assumptions A1 and A2 at most f + 1 focal points can appear to be faulty during T time units. Therefore, at least |Q| — (f+ 1) focal

points in a quorum reply. This proves our thesis since the QBcast service guarantees reliable delivery, and the maximum round-

trip transmission delay is equal to T.

The following lemma and Theorem 1 is a straightforward derivation of the liveness of the Qbcast service.

Write (v):

s ← {v, t, unconfirmed, rand}

{acki} i  Q ← qbcast (<write s>)

{acki} i  Q ← qbcast (<confirm s>)

Read/recovery ():

{si} i  Q ← qbcast (<read>)

s ← state ({si}) i  Q

if (s not confirmed)

{acki} i  Q ← qbcast (<confirm s>)

return s.val

81

Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

Lemma 4. An active focal point recovers within T time units.

Theorem 1. This implementation of atomic read/write shared memory guarantees data availability.

Lemma 5. At any time in the execution there are at most f+ I faulty and recovering focal points. Proof. Because of Assumptions

A1 and A2, and Lemma 4, there are at most f + 1 faulty and recovering focal points during any time interval [t,t + τ] for any time

t in the execution. This can occur if there are f faulty focal points before t and during [t, t + τ] one of these faulty focal points

recovers and another one fails.

B. Atomic Consistency

 There exists a total ordering of the operations with certain properties. We need to show that the total order is consistent

with the natural order of invocations and response. That is, if o1 completes before o2 begins, then o1 <a o2.

Lemma 6. The reply set Q associated with a request satisfies the following properties:

Proof. The first property holds because the QBcast service completes only upon receiving at least |Q| - (f+ 1) replies from a

quorum of servers. Therefore,

Since |QUQ| = |Q| + |Q| - |Q∩Q| and |QUQ| ≤ n,

Then,

Therefore, since for any a, b  R, then

Lemma 7. Let o1 be a write operation with associated state s1. Then, at any time t in the execution with t > res (o1) there exists

a subset Mt of active focal points such that,

(i) (Equality holds only if /focal points are faulty and one is recovering);

(ii) The state s of its active focal points at time t is such that s1 ≤s s.

Proof. Let us denote t1 — res (o1), and I = [t1, t]. We prove the lemma by induction on the number k of subintervals W1, . . .,

Wi, . . ., Wk of I of size ≤τ, such that Wi = [t1 + (i - 1) τ , t1 + iτ] for i = 1, . . .,k, and [t1, t2] C Uk
i=1Wi .We want to show that at

any time t there exists a subset Mt satisfying definitions 1. And 2.

If k = 1, there exists a subset Mt of active focal points whose state is ≥ s1. It consists of the reply set Q associated with o1, less

an eventual additional failure occurred in [t1, t].Therefore, because of Lemma 6 and Assumption 1 and 2 of our failure model,

The equality holds only if f + 1 focal points in Q did not receive o1request and one of the focal points in Q fails during [t1 , t].

This can occur only if one focal point recovers, because of Assumption 1. In addition, the state of any recovering focal point in

W1 is ≥ s1 because M ∩ Q ≠ Ø for each Q Qm In fact

Therefore each focal point that recovered during W1 can be accounted in set Mt after its recovery. Therefore,

 Only if f focal points are faulty and one is recovering.

Q

for

Q Q ii

f n
Q i

opt

Q any 2) (

;
2

) (
  






 − 

−

∩

n
f n f n

Q Q
−  


 
 + + +  


 
 −  −

2

3

2
∩

. 2
2

3
= − 








+ 

−
n n Q Q ∩

1 1
2

3

2
 − − 







 + +
+ 







 −
 n

f n f n M
t Q ∩

82








 −


+−


−

22

1 fnfn
Q








 +









+









222

baba

1
2

−






 −


fn
M t

1
2

−






 −


fn
M t

1
2

−






 −
=

fn
M t

Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

3. Methodology and Notation of Mobile Unity

This section provides a gentle introduction to Mobile UNITY. A significant body of published work is available for the reader

interested in a more detailed understanding of the model and its applications to the specification and verification of Mobile IP

[4], and to the modeling and verification of mobile code, among others. Each UNITY .program comprises a declare, always,

initially, and assign section. The declare section contains a set of variables that will be used by the program. Each is given a

name and a type. The always section contains definitions that may be used for convenience in the remainder of the program or

in proofs. The initially section contains a set of state predicates which must be true of the program before execution begins.

Finally, the assign section contains a set of assignment statements. In each section, the symbol is" is used to separate the

individual elements (declarations, definitions, predicates, or statements). Each assignment statement is of the form x = e if p,

where x is a list of program variables, e is a list of expressions, and p is a state predicate called the guard [5]. When a statement

is selected, if the guard is satisfied, the right-hand side expressions are evaluated in the current state and the resulting values are

stored in the variables on the left-hand side. The standard UNITY execution model involves a non-deterministic, weakly-fair

execution of the statements in the assign section. The execution of a program starts in a state satisfying the constraints imposed

by the initially section. At each step, one of the assignment statements is selected and executed. The selection of the statements

is arbitrary but weakly fair, i.e., each statement is selected infinitely often in an infinite execution [5] [6].All executions are

infinite. The Mobile UNITY execution model is slightly different, due to the presence of several new kinds of statements, e.g.,

the reactive statement and the inhibit statement described later. A toy example of a Mobile UNITY program is shown below.

Program host (i) at λ

 Declare

Token: integer

Initially

Token = 0

Assign

Count token: = token + 1

 Move:: λ: =Move (i, λ)

 End host

The name of the program is host, and instances are indexed by i. The first assignment statement in host increases the token

count by one. The second statement models movement of the host from one location to another. In Mobile UNITY, movement

is reduced to value assignment of a special variable λ that denotes the location of the host. We use Move (i, λ) to denote some

expression that captures the motion patterns of host (i) .

 The overall behavior of this toy example host is to count tokens while moving. The program host (i) actually defines a

class of programs parameterized by the identifier i. To create a complete system, we must create instances of this program. As

shown below, the Components section of the Mobile UNITY program accomplishes this. In our example we create two hosts

and place them at initial locations λ0 and λ1.

 System ad-hoc network

 Program host (i) at λ

……………

End host

 Components

host (0) at λ0

 host (1) at λ1

Interactions

host (0).token, host (1).token:=host (0).token, host (1).token, 0

When (host (0) λ = host (1).token. λ)

^ (host (1).token = 0)

Inhibit host (l).move and host (0).move

When (host (0). λ = host (1). λ)

 ^ (host (l).token > 10)

 End ad-hoc network

 Unlike UNITY, in Mobile UNITY all variables are local to each component. A separate section specifies coordination

among components by defining when and how they share data. In mobile systems, coordination is typically location dependent.

Furthermore, in order to define the coordination rules, statements in the Interactions section can refer to variables belonging

to the components themselves using a dot notation. The section may be viewed as a model of physical reality (e.g.,

communication takes place only when hosts are within a certain range) or as a specification for desired system services. The

operational semantics of the inhibit construct is to strengthen the guard of the affected statements whenever the when clause is

true. The statements in the Interactions section are selected for execution in the same way as those in the component programs.

Thus, without the inhibit statement, host(0) and host(l) may move away from each other before the token collection takes place,

i.e., before the first interaction statement is selected for execution. With the addition of the inhibit statement, when two hosts

are co-located, and host(l) holds more than ten tokens, both hosts are prohibited from moving, until host(l) has fewer than eleven

tokens[26]. The inhibit construct adds both flexibility and control over the program execution.In addition to its programming

notation, Mobile UNITY also provides a proof logic, a specialization of temporal logic. As in UNITY, safety properties specify

838

3

Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

that certain state transitions are not possible, while progress properties specify that certain actions will eventually take place.

The safety properties include unless, invariant, and stable [25][26]:

• p unless q asserts that if the program reaches a state in which the predicate (p ^ ¬q) holds, p will continue to hold at least as

long as q does not, which may be forever.

• Stable p is defined as p unless false, which states that once p holds; it will continue to hold forever.

• Inv p means ((INIT) p) ^ stable p), i.e., p holds initially and throughout the execution of the program. INIT characterizes

the program's initial state.

 The basic progress properties include ensures, leads-to, until, and detects:
• p ensures q simply states that if the program reaches a state where p is true, p remains true as long as q is false, and there is

one statement that, if selected, is guaranteed to make the predicate q true- This is used to define the most basic progress property

of programs.

• p leads-to q states that if program reaches a state where p is true, it will eventually reach a state in which q is true. Notice that

in the leads-to, p is not required to hold until q is established.

• p until q defined as ((p leads-to q) ^ (p unless q)), is used to describe a progress condition which requires p to hold up to the

point when q is established.

• p detects q is defined as (p q) ^ (q leads-to p)

 All of the predicate relations defined above represent a short-hand notation for expressions involving Hoare triples

quantified over the set of statements in the system. Mobile UNITY and UNITY logic share the same predicate relations.

Differences become apparent only when one examines the definitions of unless and ensures and the manner in which they handle

the new programming constructs of Mobile UNITY. Here are some properties the toy-example satisfies:

(1) (host (0).token + host (l).token = k)

 Unless (host (0).token + host (l).token > k)

 — The total count will not decrease

(2) host (0).token = k leads-to host (0).token > k

 — The number of tokens on host (0) will eventually increase

 In the next section we employ the Mobile UNITY proof logic to give a formal requirements definition to the geoquorum

approach (the application of the paper).

4. The Geoquorum-Approach (The Application)

 In this paper the Geoquorum algorithm is presented for implementing the atomic read/write in shared memory of mobile ad

hoc networks. This approach is based on associating abstract atomic objects with certain geographic locations. It is assumed

that the existence of Focal Points, geographic areas that are normally "populated" by mobile nodes. For example: a focal point

may be a road Junction, a scenic observation point. Mobile nodes that happen to populate a focal point participate in

implementing a shared atomic object, using a replicated state machine approach. These objects, which are called focal point

objects, are prone to Occasional failures when the corresponding geographic areas are depopulated. The Geoquorums algorithm

uses the fault-prone focal point objects to implement atomic read/write operations on a fault-tolerant virtual shared object. The

Geoquorums algorithm uses a quorum- based strategy in which each quorum consists of a set of focal point objects. The quorums

are used to maintain the consistency of the shared memory and to tolerate limited failures of the focal point objects, which may

be caused by depopulation of the corresponding geographic areas. The mechanism for changing the set of quorums has

presented, thus improving efficiency [18] [19]. Overall, the new Geoquorums algorithm efficiently implements read/write

operations in a highly dynamic, mobile network. In this chapter, a new approach to designing algorithms for mobile ad hoc

networks is presented. An ad hoc network uses no pre-existing infrastructure, unlike cellular networks that depend on fixed,

wired base stations. Instead, the network is formed by the mobile nodes themselves, which co-operate to route communication

from sources to destinations. Ad hoc communication networks are by nature, highly dynamic. Mobile nodes are often small

devices with limited energy that spontaneously join and leave the network. As a mobile node moves, the set of neighbors with

which at can directly communicate may change completely. The nature of ad hoc networks makes it challenging to solve the

standard problems encountered in mobile computing, such as location management using classical tools. The difficulties arise

from the lack of a fixed infrastructure to serve as the backbone of the network. In this section developing a new approach that

allows existing distributed algorithm to be adapted for highly dynamic ad hoc environments one such fundamental problem in

distributed computing is implementing atomic read/ write shared memory [20]. Atomic memory is a basic service that facilitates

the implementation of many higher level algorithms. For example: one might construct a location service by requiring each

mobile node to periodically write its current location to the memory. Alternatively, a shared memory could be used to collect

real – time statistics, for example: recording the number of people in a building here, a new algorithm for atomic multi

writes/multi- reads memory in mobile ad hoc networks. The problem of implementing atomic read/write memory is divided

into two parts; first, we define a static system model, the focal point object model that associates abstract objects with certain

fixed geographic locales. The mobile nodes implement this model using a replicated state machine approach. In this way, the

dynamic nature of the ad hoc network is masked by a static model. Moreover it should be noted that this approach can be applied

to any dynamic network that has a geographic basis. Second, an algorithm is presented to implement read/write atomic memory

using the focal point object model. The implementation of the focal point object model depends on a set of physical regions,

known as focal points .The mobile nodes within a focal point cooperate to simulate a single virtual object, known as a focal

point object. Each focal point supports a local broadcast service, LBcast which provides reliable, totally ordered broadcast. This

service allows each node in the focal point to communicate reliably with every other node in the focal point. The focal broadcast

service is used to implement a type of replicated state machine, one that tolerates joins and leaves of mobile nodes. If a focal

84

Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

point becomes depopulated, then the associated focal point object fails. (Note that it doesn't matter how a focal point becomes

depopulated, be it as a result of mobile nodes failing, leaving the area, going to sleep. etc. Any depopulation results in the focal

point failing). The Geoquorums algorithm implements an atomic read/write memory algorithm on top of the geographic

abstraction, that is, on top of the focal point object model. Nodes implementing the atomic memory use a Geocast service to

communicate with the focal point objects. In order to achieve fault tolerance and availability, the algorithm replicates the

read/write shared memory at a number of focal point objects. In order to maintain consistency, accessing the shared memory

requires updating certain sets of focal points known as quorums. An important aspect of our approach is that the members of

our quorums are focal point objects, not mobile nodes. The algorithm uses two sets of quorums (I) get-quorums (II) put-

quorums with property that every get-quorum intersects every put-quorum. There is no requirement that put-quorums intersect

other put-quorums, or get-quorums intersect other get-quorums. The use of quorums allows the algorithm to tolerate the failure

of a limited number of focal point objects. Our algorithm uses a Global Position System (GPS) time service, allowing it to

process write operations using a single phase, prior single-phase write algorithm made other strong assumptions, for example:

relying either on synchrony or single writers. This algorithm guarantees that all read operations complete within two phases,

but allows for some reads to be completed using a single phase: the atomic memory algorithm flags the completion of a previous

read or write operation to avoid using additional phases, and propagates this information to various focal paint objects[11]. As

far as we know, this is an improvement on previous quorum based algorithms. For performance reasons, at different times it

may be desirable to use different times it may be desirable to use different sets of get quorums and put-quorums. For example:

during intervals when there are many more read operations than write operations, it may be preferable to use smaller get-

quorums that are well distributed, and larger put-quorums that are sparsely distributed. In this case a client can rapidly

communicate with a get-quorum while communicating with a put – quorum may be slow. If the operational statistics change, it

may be useful to reverse the situation. The algorithm presented here includes a limited "reconfiguration" Capability: it can

switch between a finite number of predetermined quorum systems, thus changing the available put-quorums and get –quorums.

As a result of the static underlying focal point object model, in which focal point objects neither join nor leave, it isn't a severe

limitation to require the number of predetermined quorum systems to be finite (and small). The resulting reconfiguration

algorithm, however, is quite efficient compared to prior reconfigurable atomic memory algorithms. Reconfiguration doesn't
significantly delay read or write operations, and as no consensus service is required, reconfiguration terminates

rapidly[17][18][19] .

The mathematical notation for the geoquorum approach

 - I the totally- ordered set of node identifiers.

- I0 є I, a distinguished node identifier in I that is smaller than all order identifiers in I.

- S, the set of port identifiers, defined as N<0× OP×I,

 Where OP= {get, put, confirm, recon- done}.

- O, the totally- ordered, finite set of focal point identifiers.

- T, the set of tags defined as R ≥0 × I.

- U, the set of operation identifiers, defined as R ≥0 × S.

- X, the set of memory locations for each x є X:

 - Vx the set of values for x

 - v0,x є Vx , the initial value of X

- M, a totally-ordered set of configuration names

- c0 є M, a distinguished configuration in M that is smaller than all other names in M.

- C, totally- ordered set of configuration identifies, as defined as: R ≥0 ×I ×M

- L, set of locations in the plane, defined as R× R

 Fig .2 Notations Used in The Geoquorums Algorithm.

Variable Types for Atomic Read/Write object in Geoquorum Approach for Mobile Ad Hoc Network

The specification of a variable type for a read/write object in geoquorum approach for mobile ad hoc network is presented. A

read/write object has the following variable type (see fig .3) [8].

Put/get variable type 

State

Tag  T, initially< 0.i0>

Value  V, initially v0

Config-id  C, initially< 0, i0, c0>

Confirmed-set C T, initially Ø

Recon-ip, a Boolean, initially false

Operations

Put (new-tag, new-value, new-Config-id)

If (new-tag> tag) then

 Value ←new-value

Tag ← new-tag

If (new-Config-id > Config-id) then

Config-id ← new-config-id

85

Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

Recon-ip ← true

Return put-Ack (Config-id, recon-ip)

Get (new-config-id)

If (new-config-id >Config-id) then

Config-id ← new-Config-id

Recon-ip ←true

Confirmed ← (tag  confirmed-set)

Return get-ack (tag, value, confirmed, Config-id, recon-ip)

Confirm (new-tag)

Confirmed-set ←confirmed –set U {new-tag}

Return confirm-Ack

Recon –done (new-Config-id)

If (new-Config-id=Config-id) then

Recon-ip ←false

Return recon-done-Ack ()

Fig .3 Definition of the Put/Get Variable Type 

 4.1 Operation Manager

 In this section the Operation Manger (OM) is presented, an algorithm built on the focal/point object Model. As the focal

point Object Model contains two entities, focal point objects and Mobile nodes, two specifications is presented , on for the

objects and one for the application running on the mobile nodes [24] [26].

 4.1.1 Operation Manager Client

 This automaton receives read, write, and recon requests from clients and manages quorum accesses to implement these

operations (see fig .4). The Operation Manager (OM) is the collection of all the operation manager clients (OMi, for all i in I).it

is composed of the focal point objects, each of which is an atomic object with the put/get variable type:

Operation Manager Client Transitions

Input write (Val) i

Effect:

Current-port-number

Current-port-number +1

Op < write, put, <clock, i>, Val, recon-ip, <0, i0, c0>, Ø>

Output write-Ack () i

Precondition:

Conf-id=<time-stamp, Pid, c>

If op .recon-ip then

√ C/  M, э P put-quorums(C/): P C op. acc

Else

Э P put-quorums(C): P C Op. acc

Op .phase=put

Op. type=write

Effect:
Op. phase idle

Confirmed confirmed U {op. tag}

Input read () i

Effect:

Current-port-number

Current-port-number +1

Op < read, get, ┴, ┬, recon-ip, <0, i0, c0>, Ø>

Output read-ack (v) i

Precondition:

Conf-id=<time-stamp, Pid, c>

If op. recon-ip then

√ C/  M, э G get-quorums(C/): G C op. acc

Else

Э G get-quorums(C): G C op. acc

Op. phase=get

Op. type=read

Op. tag confirmed

v= op. value

Effect:

Op .phase idle 86

Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

Internal read-2()i

Precondition:

Conf-id=<time-stamp, Pid, c>

√ C/  M, э G get-quorums(C/): G C op. acc

Else

Э G get-quorums(C): G C op. acc

Op. phase=get

Op. type=read

Op. tag  confirmed

 Effect:

Current-port-number

Current-port-number +1

Op. phase put

Op. Recon. ip recon-ip

Op. acc Ø

Output read-Ack (v)i

Precondition:

Conf-id=<time-stamp, Pid, c>

If op. recon-ip then

√ C/  M, э P put-quorums(C/): P C op. acc

Else

Э P put-quorums(C): P C op. acc

Op. phase=put

Op. type=read

v=op. value

Effect:

Op. phase idle

Confirmed confirmed U {op. tag}

Input recon (conf-name)i

Effect:

Conf-id <clock, i, conf-name>

Recon-ip true

Current-port-number

Current-port-number +1

Op < recon, get, ┴, ┴, true, conf-id, Ø>

Internal recon-2(cid) i

Precondition

√ C/  M, э G get-quorums(C/): G C op. acc

√ C/  M, э P put-quorums(C/): P C op. acc

Op. type=recon
Op. phase=get

Cid=op. recon-conf-id

Effect

Current-port-number

Current-port-number +1

Op. phase put

Op. acc Ø

Output recon-Ack(c) i

Precondition

Cid=op. recon-conf-id

Cid= <time-stamp, Pid, c>

Э P put-quorums(C): P C op. acc

Op. type=recon

Op. phase=put

Effect:

If (conf-id=op. recon-conf-id) then

Recon-ip false

Op. phase idle

Input geo-update (t, L) i

Effect:

Clock 1

Fig .4 Operation Manager Client Read/Write/Recon and Geo-Update Transitions for Node

 4.2 Focal Point Emulator Overview
87

Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

 The focal point emulator implements the focal point object Model in an ad hoc mobile network. The nodes in a focal point

(i.e. in the specified physical region) collaborate to implement a focal point object. They take advantage of the powerful LBcast

service to implement a replicated state machine that tolerates nodes continually joining and leaving .This replicated state

machine consistently maintains the state of the atomic object, ensuring that the invocations are performed in a consistent order

at every mobile node [8].In this section an algorithm is presented to implement the focal point object model. the algorithm

allows mobile nodes moving in and out of focal points, communicating with distributed clients through the geocast service, to

implement an atomic object (with port set q=s)corresponding to a particular focal point. We refer to this algorithm as the Focal

Point Emulator (FPE). The FPE client has three basic purposes. First, it ensures that each invocation receives at most one

response (eliminating duplicates).Second, it abstracts away the geocast communication, providing a simple invoke/respond

interface to the mobile node[19] [20]. Third, it provides each mobile node with multiple ports to the focal point object; the

number of ports depends on the atomic object being implemented. The remaining code for the FPE server is in fig .5.When a

node enters the focal point, it broadcasts a join-request message using the LBcast service and waits for a response. The other

nodes in the focal point respond to a join-request by sending the current state of the simulated object using the LBcast service.

As an optimization, to avoid unnecessary message traffic and collisions, if a node observes that someone else has already

responded to a join-request, and then it does not respond. Once a node has received the response to its join-request, then it starts

participating in the simulation, by becoming active. When a node receives a Geocast message containing an operation

invocation, it resends it with the Lbcast service to the focal point, thus causing the invocation to become ordered with respect

to the other LBcast messages (which are join-request messages, responses to join requests, and operation invocations).since it

is possible that a Geocast is received by more than one node in the focal point ,there is some bookkeeping to make sure that

only one copy of the same invocation is actually processed by the nodes. There exists an optimization that if a node observes

that an invocation has already been sent with LBcast service, then it does not do so. Active nodes keep track of operation

invocations in the order in which they receive them over the LBcast service. Duplicates are discarded using the unique operation

ids. The operations are performed on the simulated state in order. After each one, a Geocast is sent back to the invoking node

with the response. Operations complete when the invoking node with the response. Operations complete when the invoking

node remains in the same region as when it sent the invocation, allowing the geocast to find it. When a node leaves the focal
point, it re-initializes its variables .A subtle point is to decide when a node should start collecting invocations to be applied to

its replica of the object state. A node receives a snapshot of the state when it joins. However by the time the snapshot is received,

it might be out of date, since there may have been some intervening messages from the LBcast service that have been received

since the snapshot was sent. Therefore the joining node must record all the operation invocations that are broadcast after its join

request was broadcast but before it received the snapshot .this is accomplished by having the joining node enter a "listening"

state once it receives its own join request message; all invocations received when a node is in either the listening or the active

state are recorded, and actual processing of the invocations can start once the node has received the snapshot and has the active

status. A precondition for performing most of these actions that the node is in the relevant focal point. This property is covered

in most cases by the integrity requirements of the LBcast and Geocast services, which imply that these actions only happen

when the node is in the appropriate focal point [8][9][10].

Focal Point Emulator Server Transitions

Internal join () Obj , i

Precondition:

Location  FP-location

Status=idle

Effect:

Join-id ←<clock, i>

Status← joining

Enqueue (Lbcast-queue, <join-req, join-id>)

Input Lbcast- rcv (< join-req, jid>) obj, i

Effect:

If ((status=joining)) ^ (jid=Join-id)) then

Status ←listening

If ((status=active))(^ jid answered-join-reqs)) then

Enqueue (LBcast-queue, < join-ack, jid, val>)

Input Lbcast- rcv (<join-ack, jid, v>) obj, i

Effect:

Answered-join-reqs ← answered-join-reqs U {jid}

If ((status=listening) ^ (jid =join-id)) then

Status ← active

val V

Input Geocast –rcv (< invoke, inv, oid, loc, FP-loc>) obj,i

Effect:

If (FP-loc=FP-location) then

If (<inv, oid, loc> pending-ops U completed ops) then

Enqueue (Lbcast-queue, <invoke, inv, oid, loc>)

Input LBcast –rcv (< invoke, inv, oid, loc>) obj,i

Effect:

88

Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

If ((status=listening V active) ^

(<inv, oid, loc>pending-ops U completed-ops)) Then

Enqueue (pending-ops, <inv, oid, loc>)

Internal simulate-op (inv) obj, i

Precondition:

Status=active

Peek (pending-ops) =<inv, oid, loc>

Effect:

(Val, resp)←  (inv, val)

 Enqueue (geocost- queue, < response, resp, oid, loc>)

Enqueue (completed-ops, Dequeue (pending-ops))

Internal leave () obj, i

Precondition:

Location fp-location

Status ≠ idle

Effect:

Status← idle

Join-id← <0, i0>

Val ← v0

Answered -join- reqs← Ø

Pending –ops ← Ø

Completed-ops ← Ø

Lbcast-queue ← Ø

Geocast-queue ← Ø

Output Lbcast (m) obj, i

Precondition:

Peek (Lbcast-queue) =m

Effect:

Duqueue (Lbcast- queue)

Output geocast (m) obj, i

Precondition:

Peek (geocast-queue) =m

Effect:

Dequeue (geocost- queue)

Input get-update (l, t) obj,i

Effect:

Location ← l

Clock← t
Fig. 5 FPE Server Transitions for Client i and Object Obj of Variable Type  = <V, v0, invocations, responses, δ >

5. Problem Specification

 The methodology for formal specification of the geoquorum approach is illustrated by considering a set of mobile nodes with

identifiers with values from 0 through (N-1) moving through space. Initially some of the nodes are idle while others are active.

Nodes communicate with each other while in range. A node can becomes idle at any time but can be reactivated if it encounters

an active node. The basic requirement is that of determining that all nodes are idle and storing that information in a Boolean

flag (claim) located on some specific node say node (i0), formally the problem reduces.

 Stable W (S1)

Claim detects W (P1)

 Where W is the condition

 W=< ^ i: 0 < i ≤N:: idle [i] > (D1)

(S1) is a safety property stating that once all nodes are idle, no node ever becomes active again. (P1) is a progress property

requiring the flag claim to eventually record the system's quiescence. Using idle [i] to express the quiescence of a node and

define active [i] to be its negation. It is important to note that the problem definition in this case does not depend on the nature

of the underlying computation.

 5.1 Formal Derivation

89

Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

 In this section, specification refinement techniques are employed toward the goal of generating a programming solution

that accounts for the architectural features of ad hoc networks which form opportunistically as nodes move in and out of range.

The refinement process starts by capturing high level behavioral features of the underlying application. In each case, we provide

the informal motivation behind that particular step and show the resulting changes to the specification. As an aid to the reader,

each refinement concludes with a list of specification statement labels that captures the current state of the refinement process,

as in: Refinement 0: P1, S1

 5.1.1 Refinement 1: Activation Principle

 A node invocation may become put, get, confirm, reconfig – done. The safety property of these computations can be

expressed as:

Get [i] (S2)

Unless

Put [i] (S3)

 Unless

Confirm [i] (S4)

 Unless

 Unless

< Э id, ip: config-id ≠ new-config- id:: recon-ip=false>

 In previous, it is determined that all invocations and its conditions of the application.

Refinement 1: P1, S2, S3, S4, S5.

 5.1.2 Refinement 2: Parameters Based Accounting

 Frequent node movement makes direct counting inconvenient, but we can accomplish the same thing by associating id, port-

number with each invocation node. Independent of whether it is currently idle or active, each node in the system holds zero or

more ids. The advantage of this approach is that ids can be collected and then counted at the collection point. If we define D to

be the number of ids in the system and I to be the number of confirm nodes, i.e.

)3(1 ::][:

)2(][::

D

D
+

+

iconfirmiI

iidiD

The relationship between the two is established by the invariant:

 Inv.D = I (S6)

By adding this constraint to the specification, the quiescence property (W) may be replaced by the predicate (D = N), where N

is the number of nodes in the system. Property (P1) is then replaced by:

 Claim detects D = (P2)

With the collection mechanism left undefined for the time being.

 Refinement 2: P2, S2, S3, S4, S5, S6.

 5.1.3 Refinement 3: Config-Ids Increasing

 To maintain the invariant that the number of ids in the system reflects the number of idle nodes, activation of an idle node

requires that the number of ids increase by one. Therefore, when an active node put invoke an idle node, they must increase

config-id between them. To express this, we add a history variable config-id / [i], which maintains the value config-id [i], held

before it changed last. And the put invocation is a history state of the put-ack state node; this for all states of nodes of the related

work and the safety property of the put invocation is as follow:

 Put [i] (S7)
90

tag)-new Tag id,-config-new

id-config ::tag- new Tag id,-config-new id-config :Tid,





 id-config - new id-config ::id-config-new id-config :id

)(S [i] done-Recon

tag- new Tag :: tag-new Tag :T

5



Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

 Put-ack [j]

 Unless

Captures the requirement that, when node i activates and becomes node j, the config-id of node j must be increase in the same

step. Clearly, this new property strengthens property (S2), (S3), (S6).

 Refinement 3: P2, S4, S5, S7.

 5.1.4 Refinement: Operations –Id Collection

 According to FPE server, FPE client algorithms, the completed operations is arranged in rank of operations that have been

simulated initially ø and there exist Val  V, holds current value of the simulated atomic node, initially v0. oid is a history id

of the operation; new-oid is the current id of the operation. To simplify our narration, a host with a higher id is said to rank

higher than a node with a lower id. Oid (v0) should eventually collect all N oids. We will accomplish this by forcing nodes to

pass their oids to lower ranked nodes for this, we introduce two definitions:

L=<+i: obj [i]:: oid [i] > (D4)

Count the number of oids idle agents hold. Obviously, L = N, when all nodes are idle. We also add

w= < max i: L=N ^ oid [i] > 0:: i > (D5)

To keep track of the highest ranked node holding oids. After all nodes are idle, we will force w to decrease until it reaches

0.when w=0 and L=N, obj (v0) will have collected all the oids. At this stage we add a new progress property,

)(k wuntil 0 P3= kw

That begins to shape the progress of oid passing. As mentioned, the until property is a combination of a safety property (the

unless portion) and a progress property (the leads – to portion). As long as the highest ranked oid holder passes its oids to a

lower ranked node, we can show that all the oids will reach obj (V0= 0) without having to restrict the behavior of any node

except node (w) = obj (w). Some can replace (P2) with

 Claim detects (w=0) (P4)

Refinement 4: P2, P3, S4, S5, S7

 5.1.5 Refinement 5: Pairwise Communication

 According to the code for the FPE client and FPE server which discussed in section 3.2 clearly, a node can only activate

another node or pass (join-ids=jid) to another node if the two parties can communicate. To accomplish this, we introduce the

predicate, com (i, j) that holds if and only if nodes i and j can communicate.

We begin this refinement with a new safety property:

Idle [i] (S8)

 Unless

 < Э j: j = i : : active/[j] ^ active [j] ^ active [i] ^ (join-id[i] + join-id [j]=(join-id)/[i] +(join-id)/[j]-1)> 0 ^ com (i,j)>

This requires that nodes i and J be in communication when J activates i. Also, adding the property:

Join-id [j] > 0 ^ L=N ^ j = 0 (P5)

 Until

 Join-id [j] = 0 ^ L= N ^ < Э i< j:: com (i, j)>

This requires a node to pass its jids and when it does, to have been able to communicate with a lower ranked node. As we leave

this refinement, we separate property (P5) into its two parts; a progress property,

 Join –id [J] > 0 ^ L = N ^ J ≠ 0 (P6)

Leads-to

 Join-id[j] > 0 ^ L = N ^ < Э I < j:: com (i, j)> , And a safety property,

Join-id [j] > 0 ^ L= N ^ j = 0 (S9)

  + +

= + 

    

0 1 id[j] - Config [i] id - Config

 [j] id - Config - new [i] id - Config - (new [i]

Ack

- put

[j] ack - put [j] put :: j : j i

91

Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

Unless

Join-id[j] = 0 ^ L=N ^ < Э i< j:: com (i, j)>

 Refinement 5: P2, P3, P6, S4, S5, S7, S8, S9

 5.1.6 Refinement 6: Contact Guarantee

 Property (P6) conveys two different things. First; it ensures that a node with join-ids will meet a lower ranked node, if one

exists. Second, it requires the join-ids to be passed to the lower ranked node. The former requires us to either place restrictions

on the movement of the mobile nodes or make assumptions about the movement. For this reason, we refine property (P6) into

two obligations. The first

 Join-id [J] > 0 ^ L = N (P7)

 Leads – to

 Join-id [j] > 0 ^ L = N ^ < Э i< j:: com (i,j)>

 Guarantees that a node with join-ids will meet a lower ranked node. The second,

 Join-id [j] > 0 ^ L = N ^ < Э i< j:: com (i, j)>

 Lead-to

Join-id [j] = 0 ^ L = N ^ < Э i< j:: com (i,j)> Forces a node that has met a lower ranked node, to pass its join-ids. At the

point of passing, communication is still available. There two new properties replace property (P6).

Refinement 5: P2, P3, P7, P8, S4, S5, S6, S7, S8, S9

6. Performance Evaluation for Geoquorum Approach: Implementing Atomic Read/ Write Shared Memory

in Mobile Ad Hoc Network using Fuzzy Logic.
Let us consider these assumptions:

1-Input status word descriptions

Almost no- connect

About right

Connect

2- Output action word descriptions

Ack- response

No change needed

Almost no- response

3- Rules

Translate the above into plain English rules (Called linguistic Rules). These rules will appear as follow:

Rule 1: If the status is connect then Ack – response.

Rule 2: If the status is about right, then no change need

Rule 3: If the status is almost no- connect then Almost no- response.

4- The next (3 steps) use a charting technique, one function of the charting technique is to determine “The degree of

membership” of: Almost no- connect, about right and connect triangles for a given values (see fig.6).

Fig (6) Membership Functions

5- Associate the above inputs and outputs as causes and effects with a rules charts, as in the next fig.7 below, the chart is made

with triangles, the use of which will be explained. Triangles work just fine and are easy to work with width of the triangles can

0

1

Almost

no-

connect

(a1)

About

right

(a2)

Connect

(a3)

a1&a2 a2&a3

 Width→

(D
e
g
r
e
e
 m

em
b

e
r
-s

h
ip

)

Shoulders

Centers

(Engineering units typically b/s)

92

Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

vary [16] [17]. Narrow triangles provide tight control when operating conditions are in the area. Wide triangles provide looser

control. Narrow triangles are usually used in the center, at the set point (the target value).

Fig (7) Cause - Effect

6- We draw “effect” (output determining) triangles with their value (h=3 b/s or 4 b/s and their multiplications) is determined.

The triangles are drawn by the previous rules. Since the height doesn’t intersect with connect, so we don’t draw it in the

following (Figure 7- (a) (b)). These “effect” triangles will be used to determine the controller output. The result is affected by

the width we have given the triangles and will be calculated. See fig 10 below the no change need has a height of 0.2, 0.6 and

the Almost no- response has a height of 0.8, 0.4 because these were the intersect points for their matching “cause” triangles.

Fig. (7-a): Determination of controller output.

The output as seen in fig (7-a) is determined by calculating the point at which balance the two triangles, as follow:

The area of no change need triangle is ½ × 0.2 × 5=0.5

The area of Almost No- response triangle is ½ × 0.8 × 2=0.8

We are looking for the balance point; find the balance point with the following calculation:

Equation1: 0.8× D1 = 0.5 × D2

(D1 is the fulcrum distance form X1 and, D2 is the fulcrum distance from Y1)

Equation2: D1 + D2 = 2.5 → D1 = 2.5-D2

So, by substituting (2-5- D2) for D1 in equation1 gives D2

0.8× (2.5- D2) = 0.5 D2

2-0.8 D2 = 0.5 D2

2=1.3 D2 → D2= 1.5

 D1 =1

Fig (7-b): Determination of controller output.

Almost no-

response

No change needed

1 2 3 4 5 6 7 8 9

 X2.D1 = D2ـ Y2

Controller output

0.4

0.6

Almost

no-

response

no change needed

 1 2 3 4 5 6 7 8 9

10
X1.D1= D2ـY1

Controller Output
0.8

0.2

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

Almost

no-

connect

About

right

Connect

Measured value 3 b/s intersect
about right at 0.2, intersect at

almost no connect at 0.8.

1 2 3 4 5 6 7 8 9 10
 (b/s)→

Measured value 4 b/s intersect
about right at 0.6, intersect at

almost no connect at 0.4.

93

Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

The output as seen in fig (7-b) is determined by calculating the point at which balance the two triangles, as follow:

The area of no change need triangle is ½ × 6 × 0.6= 1.8

The area of Almost No- response triangle is ½ × 3 × 0.4=0.6

We are looking for the balance point; find the balance point with the following calculation:

Equation1: 0.6× D1 = 1.8 × D2

(D1 is the fulcrum distance form X2 and, D2 is the fulcrum distance from y2)

Equation2: D1 + D2 = 3.5 → D1 = 3.5- D2

So, by substituting (3.5- D2) for D1 in equation1 gives D2

0.6× (3.5- D2) = 1.8 D2

2.1- 0.6 D2 = 1.8 D2

2.1=1.8 D2 +0.6 D2

2.1=2.4 D2 → D2 ≈ 0.9

 D1 =2.6

Note that, few discussing samples at instant times with a resulting controller output; the controller is sampling several times

each second with a resulting “correction” output following each sample.

CONCLUSIONS AND FUTURE WORK

 In this paper the formal derivation of geoquorum approach for mobile ad hoc networks is presented. This formal specification

is built from mobile unity primitives and proof logic .Also this paper provides strong evidence that a formal treatment of mobility

and its applications isn't only feasible but, given the complexities of mobile computing. There is an open area for using this

specification to mechanistically construct the program text as: first, defining the program components, and then deriving the

program statements directly from the final specification, the resulting program (called a system in mobile UNITY). Also, a

small set of mobility constraints that are necessary to ensure strong data guarantees in highly mobile networks are viewed. Also,

quorum systems in highly mobile networks are discussed and devised a condition that is necessary for a quorum system to

guarantee data consistency and availability under the mobility constraints as a survey. This work leaves several open questions

such as the problem of dealing with network partitions and periods of network instability in which there are set of assumptions

are invalid .Also, In this paper a specification and performance evaluation for the Geoquorums approach for implementing

atomic read/write shared memory in mobile ad hoc networks which is based on fuzzy logic is presented . The advantages of this

solution are: a natural treatment for certain non-functional attributes that cannot be exactly evaluated and specified, and a relaxed

matching of required/provided attributes that do not have to always be precise and consistent.

REFERENCES

[1]A. Smith, H. Balakrishnan, M. Goraczko, N. Priyantha, "Support for Location: Tracking Moving Devices with the Cricket

Location System", in: Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services, Jun

2014.

[2]S. Gilbert, N. Lynch, A. Shvartsman, "RAMBO II: Rapidly Reconfigurable Atomic Memory for Dynamic Networks," in:

Proceedings of the International Conference on Dependable Systems and Networks, June 2013, PP. 259-269.

[3]B. Liu, P. Brass, O. Dousse, P. Nain, D. Towsley, "Mobility Improves Coverage of Sensor Networks", in: Proceedings of

Mobile Ad Hoc, May 2015, PP. 300-308.

[4]R. Friedman, M. Gradinariu, G. Simon, "Locating Cache Proxies in MANETs", in: Proceedings of the 5th International

Symposium of Mobile Ad Hoc Networks, 2014, PP. 175-186.

[5]J. Luo, J-P. Hubaux, P. Eugster," Resource Management: PAN: Providing Reliable Storage in Mobile Ad Hoc Networks

with Probabilistic Quorum Systems", in: Proceedings of the 4th International Symposium on Mobile Ad Hoc Networking and

Computing, 2003, PP. 1-12.

[6]D. Tulone, Mechanisms for Energy Conservation in Wireless Sensor Networks. Ph.D. Thesis, Department of Computer

Science, University of Pisa, Dec 2015.

[7]W. Zhao, M. Ammar, E. Zegura,"A Message Ferrying Approach for Data Delivery in Sparse Mobile Ad Hoc Networks", in:

Proceedings of the 5th International Symposium on Mobile Ad hoc Networking and Computing, May 2016, PP.187-198.

[8]S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, J. Welch, "GeoQuorums: Implementing Atomic Memory in Mobile Ad Hoc

Networks", in: Proceedings of the 17th International Conference on Distributed Computing, October 2017, PP. 306-320.

[9]H. Wu, R. Fujimoto, R. Guensler, M. Hunter, "MDDV: A Mobility-Centric Data Dissemination Algorithm for Vehicular

Networks", in: Proceedings of the1st International Workshop on Vehicular Ad hoc Networks, Oct 2018, PP. 47-56.

[10]J. Polastre, J. Hill, D. Culler, "Versatile Low Power Media Access for Wireless Sensor Networks", in: Proceedings of

SenSys, 2004.

15

94

Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586

[11] S. PalChanduri, J.-Y. Le Boudec, M. Vojnovic, "Perfect Simulations for Random Mobility Models", in: Annual Simulation

Symposium 2005, PP. 72-79. Available from: http://www.cs.rice.edu/santa/ research/mobility

[12]J.Y. Le Boudec, M. Vojnovic, "Perfect Simulation and Stationarity of A Class Of Mobility Models", INFOCOM (2015).

[13] T. Hara, "Location Management of Replication Considering Data Update in Ad Hoc Networks, in: 20th International

Conference AINA, 2016, PP. 753-758.

[14] T. Hara," Replication Management for Data Sharing In Mobile Ad Hoc Networks", Journal of Interconnection Networks

7(1) (2016), PP.75-90.

[15] Y Sawai, M. Shinohara, A. Kanzaki, T. Hara, S. Nishio, "Consistency Management Among Replicas Using A Quorum

System in Ad Hoc Networks", MDM (2006), PP.128-132.

[16] S.I. Ahamed, M.M. Haque, M.E. Hoque, F. Rahman, N. Talukder, "Design, analysis, and deployment of formal trust model

(FTM) with trust bootstrapping for pervasive environments," Journal of Systems and Software, vol. 83, no. 2, p. 253–270, 2018.

[17] N. Iltaf, A. Ghafoor, U. Zia, " A mechanism for detecting dishonest recommendation in indirect trust computation,"

EURASIP Journal on Wireless Communications and Networking, vol. 189, 2018.

[18] Barmade , M.M. Nashipudinath, "An efficient strategy to detect outlier transactions," International Journal of Soft

Computing and Engineering (IJSCE), vol. 6, no. 174-178, p. 3, 2019.

[19] Z. He, X. Xu, J.Z. Huang, S. Deng, "Fp-outlier: frequent pattern based outlier detection," Computer Science and Information

Systems, vol. 2, no. 1, pp. 103-118, 2015.

[20] F. Hendrikx, K. Bubendorfer, R. Chard, "Reputation systems: a survey and taxonomy," Journal of Parallel and Distributed

Computing, vol. 75, pp. 184-197, 2018.

[21] Dobson, A. J., and A. G. Barnett. , An Introduction to Generalized Linear Models, Chapman and Hall/CRC. ,Taylor &

Francis Group, 2008.

[22] A . Manna, A . Sengupta, C. Mazumdar, "A survey of trust models for enterprise information systems," Procedia Comput.

Sci., vol. 85, p. 527– 534, 2016.

[23] R. Malaga, "Web-based reputation management systems: problems and suggested solutions," Electronic Commerce

Research, p. 403–417, 2018.

[24] G. D’Angelo, S. Rampone, F. Palmieri, "An artificial intelligence-based trust model for pervasive computing," Proceedings

of the 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), p. 701–706, 2015.

[25] G. D’Angelo, S. Rampone, F. Palmieri, "Developing a trust model for pervasive computing based on apriori association

rules learning and Bayesian classification," Soft Comput., p. 6297–6315, 2017.

[26] J. Weng, C. Miao, A. Goh, "Protecting Online Rating Systems from Unfair Ratings," International Conference on Trust,

Privacy and Security in Digital Business, p. 50–59, 2018

16

95

http://www.cs.rice.edu/santa/%20research/mobility

