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Abstract: The Geoquorum approach for implementing atomic read/write shaved memory in mobile ad hoc networks, 

this problem in distributed computing is revisited in the new setting provided by the emerging mobile computing 

technology. A simple solution tailored for use in ad hoc networks is employed as a vehicle for demonstrating the 

applicability of formal requirements and design strategies to the new field of mobile computing. The approach of this 

paper is based on well understood techniques in specification refinement, but the methodology is tailored to mobile 

applications and help designers address novel concerns such as logical mobility, the invocations, specific conditions 

constructs. The proof logic and programming notation of mobile UNITY provide the intellectual tools required to 

carryout this task. Also, the quorum systems are investigated in highly mobile networks in order to reduce the com-

munication cost associated with each distributed operation.  
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1. Introduction 

  Formal notations led to the development of specification languages; formal verification contributed to the application of 

mechanical theorem proffers to program checking; and formal derivation is a class of techniques that ensure correctness by 

construction, has the potential to reshape  the way software will be developed in the future program derivation is less costly 

than post factum verification, is incremental in nature, and can be applied with varying degrees of rigor in conjunction with or 

completely apart from program verification. More significantly, while verification is tied to analysis and support tools, program 

derivation deals with the very essence of the design process, the way one thinks about problems and constructs solutions [1][2]. 

An initial highly- abstract specification is gradually refined up to the point when it contains so much detail that writing a correct 

program becomes trivial. Program refinement uses a correct program as starting point and alters it until a new program satisfying 

some additional desired properties is produced. Mobile systems, in general, consist of components that may move in a physical 

or logical space if the components that move are hosts, the system exhibits physical mobility. If the components are code 

fragments, the system is said to display logical mobility, also referred to as code mobility. Code on demand, remote evaluation, 

and mobile agents are typical forms of code mobility. Of course, many systems entail a combination of both logical and physical 

mobility (as explained in our related work). The potentially very large number of independent computing units, a decoupled 

computing style, frequent disconnections, continuous position changes, and the location – dependent nature of the behavior and 

communication patterns present designers with unprecedented challenges[2][3]. While formal methods may not be ready yet to 

deliver complete practical systems, the complexity of the undertaking clearly can benefit enormously from the rigor associated 

with a precise design process, even if employed only in the design of the most critical aspects of the system. The attempt to 

answer the question raised earlier consists of a formal specification and derivation for our communication protocol for ad hoc 

mobile systems, carrying out this exercise by employing the mobile unity proof logic and programming notation. Mobile unity 

provides a notation for mobile system components, coordination language for expressing interactions among the components 

and an associated proof Logic. This highly modular extension of the UNITY model extends both the physical and logical 

notations to accommodate specification of and reasoning about mobile programs that exhibit dynamic reconfiguration. Ensuring 

the availability and the consistency of shared data is a fundamental task for several mobile network applications. For instance, 

nodes can share data containing configuration information, which is crucial for carrying out cooperative tasks. The shared data 

can be used, for example, to coordinate the duty cycle of mobile nodes to conserve energy while maintaining network 

connectivity [4]. The consistency and the availability of the data plays a crucial role in that case since the loss of information 

regarding the sleep/awake cycle of the nodes might compromise network connectivity. The consistency and availability of the 

shared data is also relevant when tracking mobile objects, or in disaster relief applications where mobile nodes have to 

coordinate distributed tasks without the aid of a fixed communication infrastructure. This can be attained via read/write shared 

memory provided each node maintains a copy of data regarding the damage assessment and dynamically updates it by issuing 

write operations. Also in this case it is important that the data produced by the mobile nodes does not get lost, and that each 

node is able to retrieve the most up-to-date information. Strong data consistency guarantees have applications also to road 

safety, detection and avoidance of traffic accidents, or safe driving assistance [5][6].The atomic consistency guarantee is widely 
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used in distributed systems because it ensures that the distributed operations (e.g., read and write operations) performed on the 

shared memory are ordered consistently with the natural order of their invocation and response time, and that each local copy 

is conforming to such an order. Intuitively, this implies that each node is able to retrieve a copy showing the last completed 

update, which is crucial in cooperative tasks. However, the implementation of a fault-tolerant atomic read/write shared memory 

represents a challenging task in highly mobile networks because of the lack of a fixed infrastructure or nodes that can serve as 

a backbone. In fact, it is hard to ensure that each update reaches a subset of nodes that is sufficiently large to be retrieved by 

any node and at any time, if nodes move along unknown paths and at high speed. The focal point model provides a first answer 

to this challenge since it masks the dynamic nature of mobile ad hoc networks by a static model. More precisely, it associates 

mobile nodes to fixed geographical locations called focal points. According to this model, a focal point is active at some point 

in time if its geographical location contains at least one active mobile node. As a result, a focal point becomes faulty when each 

mobile node populating that sub-region leaves it or crashes. The merit of this model is to study node mobility in terms of failures 

of stationary abstract points, and to design coordination protocols for mobile networks in terms of static abstract nodes [7] [8].  

2. Related Work  

   In this section, the quorum systems in highly mobile networks are investigated in order to reduce the communication cost 

associated with each distributed operation. Our analysis is driven by two main reasons: (1) guarantee data availability, and (2) 

reduce the amount of message transmissions, thus conserving energy. The availability of the data is strictly related to the liveness 

and response time of the recovery protocol since the focal point failures occur continuously, as they are triggered by the motion 

of nodes. Quorum systems are well-known techniques designed to enhance the performance of distributed systems, such as to 

reduce the access cost per operation and the load. A quorum system of a universe U is a set of subsets of U, called quorums, 

such that any pair of quorums does intersect. In this paper, the analyzing of quorum systems is in condition of high node 

mobility. Note that the universe U of our quorum systems is (Focal Point) FP, a set of n stationary focal  points. This choice 

allows us to study node mobility in terms of continuous failures of stationary nodes. In the next Section, two examples of 

quorum systems are analyzed and show that they are not always able to guarantee data consistency and availability under the 

mobility constraints, and provide in Lemma 1 a condition on the size of the minimum quorum intersection that is necessary to 

guarantee these properties [9][10].  

2.1 Quorum Systems under Mobility Model 

  This section shows here that quorums proposed for static networks are not able to guarantee data consistency and availability 

if assumptions A1 and A2 hold, because the minimum quorum intersection is not sufficiently large to cope with the mobility of 

the nodes. In fact, since read/write operations are performed over a quorum set, in order to guarantee data consistency each read 

quorum must intersect a quorum containing the last update. We show that there are scenarios that invalidate this condition in 

case of quorum systems Qg with non-empty quorum intersection, and in case of dissemination quorum systems Qd with 

minimum quorum intersection equal to f + 1, where f is the maximum number of failures [11][12]. 

   2.1.1 Generic Quorum System 

  It is a set of subsets of a finite universe U such that, any two subsets (quorums) intersect (consistency property) and, there 

exists at least one subset of correct nodes (availability property). The second condition ensures data availability and poses the 

constraint f < (n/2). In our system model where nodes continuously fail and recover, this condition is not sufficient to guarantee 

data availability. For instance, in an implementation of a read/write atomic memory based on Qg, the liveness of the read protocol 

can be violated since it terminates only after receiving a reply from a full quorum of active focal point. Therefore, since the 

recovery operation involves   a   read   operation,   data   can   become unavailable [13][14]. 

   2.1.2 Dissemination Quorum Systems 

     They satisfy a stronger consistency property, but insufficient if failures occur continuously. An f-fail-prone system ß C 2U of 

U is defined as a set of subsets of faulty nodes of U none of which is contained in another, and such that some B   ß contains 

all the faulty nodes (whose number does not exceed f). 

Definition 1. A dissemination quorum system Q d of U for a f -fail-prone system ß, is set of subsets of U with the following 

properties: 

        (i) | Q1 ∩ Q2 | ¢ B √  Q1 , Q2      Q d, √ B    ß 

          (ii) √ B    ß э Q   Q d : Q ∩ B = Ø.   

Dissemination quorum systems tolerate less than n/3 failures. Unfortunately, since in our system model an additional focal point 

might fail between the invocation and the response time of a distributed operation, more than f focal points in a quorum set can 

be non-active at the time they receive the request. As a result, data availability can be violated. The following lemma provides 

a condition on the minimum quorum intersection size (lower bound) that is necessary to guarantee data consistency and 

availability under our system model, provided nodes fail and recover [15].  
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Lemma 1. An implementation φ of a read/write shared memory built on top of a quorum system δ. of a universe FP of stationary 

nodes that fail and recover according to assumptions A1, A2 guarantees data availability only if  |Q1 ∩ Q2| > f+ 1 for any Q1 , 

Q2   Q. It ensures atomic consistency only if |Q1 ∩ Q2 > f+ 2 for any Q1 , Q2   Q. 

2.2The MDQ Quorum Systems 

This section introduces here a new class of quorum systems, called Mobile Dissemination Quorum system (MDQ) that satisfies 

the condition in Lemma 1. Definition 2. A MDQ system Q m of FP is a set of subsets of FP such that |Q1 ∩ Q2|> f + 2 for any 

Q1 , Q2   Q. Note that in contrast with Q g the liveness of the distributed operations performed over a quorum set is guaranteed 

by the minimum number of alive nodes contained in any quorum. As a result, in case of failures the sender does not need to 

access another quorum in order to complete the operation. This improves the response time in case of faulty nodes and reduces 

the message transmissions. Let us consider now the following MDQ system: 

Qopt =     Q : (Q C FP ) ^ ( | Q | =  

Lemma 2. Qopt is a MDQ system and f ≤ n - 3. 

Proof: Since |Q1 U Q2| = |Q1| + |Q2| - |Q1 ∩ Q2| for any 

 

And |Q1 U Q2| ≤ n,  then |Q1 ∩ Q2| ≥ n+f+3-n.                                     

In addition, Q opt tolerates up to n — 3 failures since the size of a quorum cannot exceed n, that is 

    

This implies (f+3-n) / 2 ≤ 0 note that Q opt is highly resilient (in the trivial case f = n -3, Q opt = {U}). Clearly, there is a trade-off 

between resiliency and access cost since the access cost per operation increases with the maximum number of failures. 

Moreover, our assumption of connectivity among active focal points becomes harder to guarantee as f becomes larger. It is 

important to note that the minimum intersection size between two quorums of Q opt is equal to f + 3. We prove in the following 

section that there exists an implementation of atomic memory built on top of Q opt This shows that f + 3 is the minimum quorum 

intersection size necessary to guarantee data consistency and data availability under our mobility model. Therefore, Q opt is 

optimal in the size of the minimum quorum intersection, that is in terms of message transmissions since the sender can compute 

a quorum consisting of its                                       closest nodes. This is particularly advantageous in sensor networks because 

it can lead to energy savings [16][17]. 

2.3 An Implementation of Read/Write Atomic Memory 

In this section, the Q opt is the quorum system with minimum intersection size f+3 that is able to guarantee data consistency and 

availability under our system model and mobility constraints. We prove that by showing that there exists an implementation φ 

of atomic read/write memory built on top of Q opt. Our implementation consists of a suite of read, write and recovery protocols 

and built on top of the focal points and the Qbcast abstraction [18][19]. 

   2.3.1 The Qbcast Service 

        We say that a focal point Fi is faulty at time t if focal point region Gi does not contain any active node at time t or Fi is not 

connected to a quorum of focal points. In our implementation each read, write and recovery request is forwarded to a quorum 

of focal points. This task is performed by the Qbcast service. It is tailored for the MDQ system and designed for hiding lower 

level details. Similarly to Qbcast guarantees reliable delivery. It is invoked using interface qbcast (m), where m is the message 

to transmit containing one of these request tags write, read, confirm. The notation {si}i   Q qbcast (m, Q denotes the Qbcast 

invocation over quorum Q, {si} i   Q the set of replies, where Q C Q. We call the subset Q the reply set associated with request 

m. This set plays a crucial role to prove data availability and atomic consistency. Upon receiving a request m, Qbcast computes 

a quorum Q   Qopt and transmits message m to each focal point in Q. It is important to note that qbcast (m) returns only if the 

node receives within T time units at least |Q| — (f + 1) replies from Q. If this does not occur, it waits for a random delay and 

retries later since if this happens the focal point is faulty by our definition. Note that if read (or write) operations occur more 

frequently than write (or read) operations, we can reduce message transmissions by distinguishing between read and write and 

making read (or write) quorums smaller. However, for simplicity of presentation we do not distinguish between read and write 

quorums [20] [21]. 
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 2.3.2 Protocols 

       The high level description of the read/write/ recovery protocols is illustrated in Fig.1. Each mobile node maintains a copy 

of the state s associated with the shared variable x, which is a compound object containing the value s.val of x, a timestamp s.t 

representing the time at which a node issued update s.val, and a confirmed tag that indicates if s.val was propagated to a quorum 

of focal points. Each node can issue write, read and recovery operations. A new state is generated each time a node issues. a 

write operation. 

 

 

 

 

 

 
 

 

 

 

 

                                                Fig.1 Write / Read/Recovery Protocols.      

  

2.3.3 Write Protocol 

     A node C requesting a write v computes a new state s consisting of value v, the current timestamp, tag unconfirmed, and a 

random identification rand. It transmits its update to a quorum of focal points via the Qbcast service by invoking qbcast (<write, 

s>) and successively qbcast (< confirm, s>) to make sure that a quorum of focal points received such an update. Upon receiving 

a write request, each non-faulty focal point (including recovering) replaces its state with the new state s only if the associate 

timestamp s.t is higher than the timestamp of its local state, and sets its write tag to unconfirmed. This tag is set to confirmed 

upon receiving the confirm request sent in the second phase of the write protocol, or sent in the second phase of the read protocol 

in case the node that issued the write operation could not complete the write operation due to failure[22][23]. 

  2.3.4 Read Protocol 

         In the read protocol, a node C invokes qbcast (<read>), which forwards the read request to a quorum Q of focal points. 

Each non-faulty focal point in Q replies by sending a copy of its local state s. Upon receiving a set of replies from the Qbcast 

service, node C computes the state with highest timestamp and returns the corresponding value. If the tag of s is equal to 

unconfirmed, it sends a confirm request. This is to guarantee the linearizabitity of the operations performed on the shared data 

in case a write operation did not complete due to client failure [24]. 

  2.3.5 Recovery Protocol 

        It is invoked by a node C upon entering an empty region Gi. More precisely, C broadcasts a join request as soon as it enters 

a new focal point region and waits for replies. If it does not receive any reply within 2d time units, where d is the maximum 

transmission delay, it invokes the recovery protocol which works in the same way as the read protocol [24][25]. 

2.4 Analysis 

       In this section, the key steps to prove the atomic consistency and data availability of the implementation presented in this 

paper is shown.  

A. Data Availability 

  The availability of the data is a consequence of our failure model and of the Qbcast service. The following lemmas are useful 

to prove it and will be also used in showing atomic consistency [26]. 

Lemma 3. The Qbcast service invoked by an active focal point terminates within Τ time units since the invocation time. 

Proof: This is true since an active focal point or is able to communicate with a quorum of focal points because of Definition 2, 

and because at most f + 1 focal points in Q can be faulty when the request reaches their focal point regions. In fact, because of 

assumptions A1 and A2 at most f + 1 focal points can appear to be faulty during T time units. Therefore, at least |Q| — (f+ 1) focal 

points in a quorum reply. This proves our thesis since the QBcast service guarantees reliable delivery, and the maximum round-

trip transmission delay is equal to T. 

The following lemma and Theorem 1 is a straightforward derivation of the liveness of the Qbcast service. 

Write (v): 

s ← {v, t, unconfirmed, rand} 

{acki} i   Q ← qbcast (<write s>) 

{acki} i   Q ← qbcast (<confirm s>) 

Read/recovery ( ): 

{si} i   Q ← qbcast (<read>) 

s ← state ({si}) i   Q 

if (s not confirmed) 

{acki} i   Q ← qbcast (<confirm s>) 

return s.val 
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Lemma 4. An active focal point recovers within T time units. 

Theorem 1. This implementation of atomic read/write shared memory guarantees data availability. 

Lemma 5. At any time in the execution there are at most f+ I faulty and recovering focal points. Proof. Because of Assumptions 

A1 and A2, and Lemma 4, there are at most f + 1 faulty and recovering focal points during any time interval [t,t + τ ] for any time 

t in the execution. This can occur if there are f faulty focal points before t and during [t, t + τ] one of these faulty focal points 

recovers and another one fails.  

B. Atomic Consistency 

       There exists a total ordering of the operations with certain properties. We need to show that the total order is consistent 

with the natural order of invocations and response. That is, if o1 completes before o2 begins, then o1 <a o2. 

Lemma 6. The reply set Q associated with a request satisfies the following properties: 

 

 

 
Proof. The first property holds because the QBcast service completes only upon receiving at least |Q| - (f+ 1) replies from a 

quorum of servers. Therefore, 

 

Since |QUQ| = |Q| + |Q| - |Q∩Q| and |QUQ| ≤ n,         

Then, 

 

Therefore, since                              for any a, b  R, then  

                                                           

                                                              
Lemma 7. Let o1 be a write operation with associated state s1. Then, at any time t in the execution with t > res (o1) there exists 

a subset Mt of active focal points such that, 

(i)                                      (Equality holds only if /focal points are faulty and one is recovering);    

(ii) The state s of its active focal points at time t is such that s1 ≤s s. 

Proof. Let us denote t1 — res (o1), and I = [t1, t]. We prove the lemma by induction on the number k of subintervals W1, . . ., 

Wi, . . ., Wk of I of size ≤τ, such that Wi = [t1 + (i - 1) τ , t1 + iτ] for i = 1, . . .,k, and    [t1, t2] C Uk
i=1Wi .We want to show that at 

any time t there exists a subset Mt satisfying definitions 1. And  2. 

If k = 1, there exists a subset Mt of active focal points whose state is ≥ s1. It consists of the reply set Q associated with o1, less 

an eventual additional failure occurred in [t1, t].Therefore, because of Lemma 6 and Assumption 1 and 2 of our failure model, 

 
 

The equality holds only if f + 1 focal points in Q did not receive o1request and one of the focal points in Q fails during [t1 , t]. 

This can occur only if one focal point recovers, because of Assumption 1. In addition, the state of any recovering focal point in 

W1 is ≥ s1 because M ∩ Q ≠ Ø for each    Q Qm In fact  

 

 
Therefore each focal point that recovered during W1 can be accounted in set Mt after its recovery. Therefore,                                                     
 

                                                     Only if   f focal points are faulty and one   is  recovering. 

 

Q 

for 

Q Q ii 

f n 
Q i 

opt 

Q any    2 ) ( 

; 
2 

  ) ( 
   

 
 

 
 
 −  

− 

∩ 

n 
f n f n 

Q Q 
−   

 
  
 + + +   

 
  
 −  − 

2 

3 

2 
∩ 

. 2 
2 

3 
= −  

 

 
 
 

 
+  

− 
n n Q Q ∩ 

1 1 
2 

3 

2 
 − −  

 

 
 
 

 + + 
+  

 

 
 
 

 − 
 n 

f n f n M 
t Q ∩ 

82 








 −


+−


−

22

1 fnfn
Q








 +









+









222

baba

1
2

−






 −


fn
M t

1
2

−






 −


fn
M t

1
2

−






 −
=

fn
M t



Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586                                                                             

3. Methodology and Notation of Mobile Unity  

This section provides a gentle introduction to Mobile UNITY. A significant body of published work is available for the reader 

interested in a more detailed understanding of the model and its applications to the specification and verification of Mobile IP 

[4], and to the modeling and verification of mobile code, among others. Each UNITY .program comprises a declare, always, 

initially, and assign section. The declare section contains a set of variables that will be used by the program. Each is given a 

name and a type. The always section contains definitions that may be used for convenience in the remainder of the program or 

in proofs. The initially section contains a set of state predicates which must be true of the program before execution begins. 

Finally, the assign section contains a set of   assignment statements. In each section, the symbol is"   is used to separate the 

individual elements (declarations, definitions, predicates, or statements). Each assignment statement is of the form x = e   if p, 

where x is a list of program variables, e is a list of expressions, and p is a state predicate called the guard [5]. When a statement 

is selected, if the guard is satisfied, the right-hand side expressions are evaluated in the current state and the resulting values are 

stored in the variables on the left-hand side. The standard UNITY execution model involves a non-deterministic, weakly-fair 

execution of the statements in the assign section. The execution of a program starts in a state satisfying the constraints imposed 

by the initially section. At each step, one of the assignment statements is selected and executed. The selection of the statements 

is arbitrary but weakly fair, i.e., each statement is selected infinitely often in an infinite execution [5] [6].All executions are 

infinite. The Mobile UNITY execution model is slightly different, due to the presence of several new kinds of statements, e.g., 

the reactive statement and the inhibit statement described later. A toy example of a Mobile UNITY program is shown below. 

Program host (i) at λ 

 Declare 

Token: integer  

Initially 

Token = 0  

Assign 

Count      token: = token + 1  

       Move::   λ: =Move (i, λ) 

 

 End host 

The name of the program is host, and instances are indexed by i. The first assignment statement in host increases the token 

count by one. The second statement models movement of the host from one location to another. In Mobile UNITY, movement 

is reduced to value assignment of a special variable λ that denotes the location of the host. We use Move (i, λ) to denote some 

expression that captures the motion patterns of host (i) . 

        The overall behavior of this toy example host is to count tokens while moving. The program host (i) actually defines a 

class of programs parameterized by the identifier i. To create a complete system, we must create instances of this program. As 

shown below, the Components section of the Mobile UNITY program accomplishes this. In our example we create two hosts 

and place them at initial locations λ0 and λ1. 

 System ad-hoc network 

 Program host (i) at λ 

…………… 

End host 

 Components 

host (0) at λ0   

       host (1) at λ1 

 

Interactions 

host (0).token, host (1).token:=host (0).token, host (1).token, 0 

When (host (0) λ = host (1).token. λ) 

^ (host (1).token =   0) 

Inhibit host (l).move and host (0).move 

When (host (0). λ    = host (1). λ) 

 ^ (host (l).token > 10) 

 End ad-hoc network 

      Unlike UNITY, in Mobile UNITY all variables are local to each component. A separate section specifies coordination 

among components by defining when and how they share data. In mobile systems, coordination is typically location dependent. 

Furthermore, in order to define the coordination rules, statements in the Interactions section can refer to variables belonging 

to the components themselves using a dot notation. The section may be viewed as a model of physical reality (e.g., 

communication takes place only when hosts are within a certain range) or as a specification for desired system services. The 

operational semantics of the inhibit construct is to strengthen the guard of the affected statements whenever the when clause is 

true. The statements in the Interactions section are selected for execution in the same way as those in the component programs. 

Thus, without the inhibit statement, host(0) and host(l) may move away from each other before the token collection takes place, 

i.e., before the first interaction statement is selected for execution. With the addition of the inhibit statement, when two hosts 

are co-located, and host(l) holds more than ten tokens, both hosts are prohibited from moving, until host(l) has fewer than eleven 

tokens[26]. The inhibit construct adds both flexibility and control over the program execution.In addition to its programming 

notation, Mobile UNITY also provides a proof logic, a specialization of temporal logic. As in UNITY, safety properties specify 
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that certain state transitions are not possible, while progress properties specify that certain actions will eventually take place. 

The safety properties include unless, invariant, and stable [25][26]: 

• p unless q asserts that if the program reaches a state in which the predicate (p ^ ¬q) holds, p will continue to hold at least as 

long as q does not, which may be forever. 

• Stable p is defined as p unless false, which states that once p holds; it will continue to hold forever. 

• Inv p means ((INIT)       p) ^ stable p), i.e., p holds initially and throughout the execution of the program. INIT characterizes 

the program's initial state. 

    The basic progress properties include ensures, leads-to, until, and detects:         
• p ensures q simply states that if the program reaches a state where p is true, p remains true as long as q is false, and there is 

one statement that, if selected, is guaranteed to make the predicate q true- This is used to define the most basic progress property 

of programs. 

• p leads-to q states that if program reaches a state where p is true, it will eventually reach a state in which q is true. Notice that 

in the leads-to, p is not required to hold until q is established. 

• p until q defined as ((p leads-to q) ^ (p unless q)), is used to describe a progress condition which requires p to hold up to the 

point when q is established. 

• p detects q is defined as (p         q) ^ (q leads-to p) 

         All of the predicate relations defined above represent a short-hand notation for expressions involving Hoare triples 

quantified over the set of statements in the system. Mobile UNITY and UNITY logic share the same predicate relations. 

Differences become apparent only when one examines the definitions of unless and ensures and the manner in which they handle 

the new programming constructs of Mobile UNITY. Here are some properties the toy-example satisfies: 

(1) (host (0).token + host (l).token = k) 

     Unless (host (0).token + host (l).token > k)  

     — The total count will not decrease 

(2) host (0).token = k leads-to host (0).token > k 

     — The number of tokens on host (0) will eventually increase 

          In the next section we employ the Mobile UNITY proof logic to give a formal requirements definition to the geoquorum 

approach (the application of the paper).  

4. The Geoquorum-Approach (The Application) 

   In this paper the Geoquorum algorithm is presented for implementing the atomic read/write in shared memory of mobile ad 

hoc networks. This approach is based on associating abstract atomic objects with certain geographic locations. It is assumed 

that the existence of Focal Points, geographic areas that are normally "populated" by mobile nodes. For example: a focal point 

may be a road Junction, a scenic observation point. Mobile nodes that happen to populate a focal point participate in 

implementing a shared atomic object, using a replicated state machine approach. These objects, which are called focal point 

objects, are prone to Occasional failures when the corresponding geographic areas are depopulated. The Geoquorums algorithm 

uses the fault-prone focal point objects to implement atomic read/write operations on a fault-tolerant virtual shared object. The 

Geoquorums algorithm uses a quorum- based strategy in which each quorum consists of a set of focal point objects. The quorums 

are used to maintain the consistency of the shared memory and to tolerate limited failures of the focal point objects, which may 

be caused by depopulation of the corresponding geographic areas. The mechanism for changing the set of quorums has 

presented, thus improving efficiency [18] [19]. Overall, the new Geoquorums algorithm efficiently implements read/write 

operations in a highly dynamic, mobile network. In this chapter, a new approach to designing algorithms for mobile ad hoc 

networks is presented. An ad hoc network uses no pre-existing infrastructure, unlike cellular networks that depend on fixed, 

wired base stations. Instead, the network is formed by the mobile nodes themselves, which co-operate to route communication 

from sources to destinations. Ad hoc communication networks are by nature, highly dynamic. Mobile nodes are often small 

devices with limited energy that spontaneously join and leave the network. As a mobile node moves, the set of neighbors with 

which at can directly communicate may change completely. The nature of ad hoc networks makes it challenging to solve the 

standard problems encountered in mobile computing, such as location management using classical tools. The difficulties arise 

from the lack of a fixed infrastructure to serve as the backbone of the network. In this section developing a new approach that 

allows existing distributed algorithm to be adapted for highly dynamic ad hoc environments one such fundamental problem in 

distributed computing is implementing atomic read/ write shared memory [20]. Atomic memory is a basic service that facilitates 

the implementation of many higher level algorithms. For example: one might construct a location service by requiring each 

mobile node to periodically write its current location to the memory. Alternatively, a shared memory could be used to collect 

real – time statistics, for example: recording the number of people in a building here, a new algorithm for atomic multi 

writes/multi- reads memory in mobile ad hoc networks. The problem of implementing atomic read/write memory is divided 

into two parts; first, we define a static system model, the focal point object model that associates abstract objects with certain 

fixed geographic locales. The mobile nodes implement this model using a replicated state machine approach. In this way, the 

dynamic nature of the ad hoc network is masked by a static model. Moreover it should be noted that this approach can be applied 

to any dynamic network that has a geographic basis. Second, an algorithm is presented to implement read/write atomic memory 

using the focal point object model. The implementation of the focal point object model depends on a set of physical regions, 

known as focal points .The mobile nodes within a focal point cooperate to simulate a single virtual object, known as a focal 

point object. Each focal point supports a local broadcast service, LBcast which provides reliable, totally ordered broadcast. This 

service allows each node in the focal point to communicate reliably with every other node in the focal point. The focal broadcast 

service is used to implement a type of replicated state machine, one that tolerates joins and leaves of mobile nodes. If a focal 

84 



Egyptian Computer Science Journal Vol.45.No.2 May 2021, ISSN-1110-2586                                                                             

point becomes depopulated, then the associated focal point object fails. (Note that it doesn't matter how a focal point becomes 

depopulated, be it as a result of mobile nodes failing, leaving the area, going to sleep. etc. Any depopulation results in the focal 

point failing). The Geoquorums algorithm implements an atomic read/write memory algorithm on top of the geographic 

abstraction, that is, on top of the focal point object model. Nodes implementing the atomic memory use a Geocast service to 

communicate with the focal point objects. In order to achieve fault tolerance and availability, the algorithm replicates the 

read/write shared memory at a number of focal point objects. In order to maintain consistency, accessing the shared memory 

requires updating certain sets of focal points known as quorums. An important aspect of our approach is that the members of 

our quorums are focal point objects, not mobile nodes. The algorithm uses two sets of quorums (I) get-quorums (II) put- 

quorums with property that every get-quorum intersects every put-quorum. There is no requirement that put-quorums intersect 

other put-quorums, or get-quorums intersect other get-quorums. The use of quorums allows the algorithm to tolerate the failure 

of a limited number of focal point objects. Our algorithm uses a Global Position System (GPS) time service, allowing it to 

process write operations using a single phase, prior single-phase write algorithm made other strong assumptions, for example: 

relying either on synchrony or single writers. This algorithm guarantees that all read operations complete within two phases, 

but allows for some reads to be completed using a single phase: the atomic memory algorithm flags the completion of a previous 

read or write operation to  avoid using additional phases, and propagates this information to various focal paint objects[11]. As 

far as we know, this is an improvement on previous quorum based algorithms. For performance reasons, at different times it 

may be desirable to use different times it may be desirable to use different sets of get quorums and put-quorums. For example: 

during intervals when there are many more read operations than write operations, it may be preferable to use smaller get- 

quorums that are well distributed, and larger put-quorums that are sparsely distributed. In this case a client can rapidly 

communicate with a get-quorum while communicating with a put – quorum may be slow. If the operational statistics change, it 

may be useful to reverse the situation. The algorithm presented here includes a limited "reconfiguration" Capability: it can 

switch between a finite number of predetermined quorum systems, thus changing the available put-quorums and get –quorums. 

As a result of the static underlying focal point object model, in which focal point objects neither join nor leave, it isn't a severe 

limitation to require the number of predetermined quorum systems to be finite (and small). The resulting reconfiguration 

algorithm, however, is quite efficient compared to prior reconfigurable atomic memory algorithms. Reconfiguration doesn't 
significantly delay read or write operations, and as no consensus service is required, reconfiguration terminates 

rapidly[17][18][19] .   

The mathematical notation for the geoquorum approach 

       -   I the totally- ordered set of node identifiers. 

- I0 є I, a distinguished node identifier in I that is smaller than all order identifiers in I. 

- S, the set of port identifiers, defined as N<0× OP×I, 

      Where OP= {get, put, confirm, recon- done}. 

- O, the totally- ordered, finite set of focal point identifiers. 

- T, the set of tags defined as R ≥0 × I. 

- U, the set of operation identifiers, defined as R ≥0 × S. 

- X, the set of memory locations for each x є X:  

           - Vx the set of values for x 

           - v0,x є Vx  , the initial value of  X 

- M, a totally-ordered set of configuration names 

- c0 є M, a distinguished configuration in M that is smaller than all other names  in M. 

- C, totally- ordered set of configuration identifies, as defined as: R ≥0 ×I ×M 

- L, set of locations in the plane, defined as R× R  
                                      
                                                   Fig .2 Notations Used in The Geoquorums Algorithm. 
 

Variable Types for Atomic Read/Write object in Geoquorum Approach for Mobile Ad Hoc Network 

The specification of a variable type for a read/write object in geoquorum approach for mobile ad hoc network is presented. A 

read/write object has the following variable type (see fig .3) [8]. 

Put/get variable type    

State  

Tag   T, initially< 0.i0>  

Value   V, initially v0 

Config-id   C, initially< 0, i0, c0> 

Confirmed-set C T, initially Ø 

Recon-ip, a Boolean, initially false 

Operations 

Put (new-tag, new-value, new-Config-id) 

If (new-tag> tag) then    

 Value ←new-value 

Tag ← new-tag 

If (new-Config-id > Config-id) then 

Config-id ← new-config-id  
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Recon-ip   ← true 

Return put-Ack (Config-id, recon-ip) 

Get (new-config-id) 

If (new-config-id >Config-id) then 

Config-id ← new-Config-id 

Recon-ip ←true 

Confirmed ← (tag   confirmed-set) 

Return get-ack (tag, value, confirmed, Config-id, recon-ip) 

Confirm (new-tag) 

Confirmed-set ←confirmed –set U {new-tag} 

Return confirm-Ack 

Recon –done (new-Config-id) 

If (new-Config-id=Config-id) then 

Recon-ip ←false  

Return recon-done-Ack (   ) 

Fig .3 Definition of the Put/Get Variable Type   

  4.1 Operation Manager 

      In this section the Operation Manger (OM) is presented, an algorithm built on the focal/point object Model. As the focal 

point Object Model contains two entities, focal point objects and Mobile nodes, two specifications is presented , on for the 

objects  and one for the application running on the mobile nodes [24] [26]. 

     4.1.1 Operation Manager Client 

       This automaton receives read, write, and recon requests from clients and manages quorum accesses to implement these 

operations (see fig .4). The Operation Manager (OM) is the collection of all the operation manager clients (OMi, for all i in I).it 

is composed of the focal point objects, each of which is an atomic object with the put/get variable type: 

 

Operation Manager Client Transitions 

Input write (Val) i 

Effect: 

Current-port-number   

Current-port-number +1 

Op < write, put, <clock, i>, Val, recon-ip, <0, i0, c0>, Ø> 

Output write-Ack ( ) i 

Precondition: 

Conf-id=<time-stamp, Pid, c> 

If op .recon-ip then 

√ C/   M, э P put-quorums(C/): P C op. acc 

Else 

Э P put-quorums(C): P C Op. acc 

Op .phase=put 

Op. type=write 

Effect: 
Op. phase                        idle 

Confirmed                          confirmed U {op. tag} 

Input read ( ) i   

Effect: 

Current-port-number   

Current-port-number +1 

Op < read, get, ┴, ┬, recon-ip, <0, i0, c0>, Ø> 

Output read-ack (v) i 

Precondition: 

Conf-id=<time-stamp, Pid, c> 

If op. recon-ip then 

√ C/   M, э G get-quorums(C/): G C op. acc 

Else 

Э G get-quorums(C): G C op. acc 

Op. phase=get 

Op. type=read 

Op. tag confirmed  

v= op. value 

Effect: 

Op .phase idle 86 
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Internal read-2( )i 

Precondition: 

Conf-id=<time-stamp, Pid, c> 

√ C/   M, э G get-quorums(C/): G C op. acc 

Else 

Э G get-quorums(C): G C op. acc 

Op. phase=get 

Op. type=read 

Op. tag   confirmed 

 Effect: 

Current-port-number   

Current-port-number +1 

Op. phase    put 

Op. Recon. ip                 recon-ip 

Op. acc   Ø 

Output read-Ack (v)i 

Precondition: 

Conf-id=<time-stamp, Pid, c> 

If op. recon-ip then 

√ C/   M, э P put-quorums(C/): P C op. acc 

Else 

Э P put-quorums(C): P C op. acc 

Op. phase=put 

Op. type=read 

v=op. value 

Effect: 

Op. phase idle 

Confirmed  confirmed U {op. tag} 

Input recon (conf-name)i 

Effect: 

Conf-id    <clock, i, conf-name> 

Recon-ip    true 

Current-port-number   

Current-port-number +1    

Op < recon, get, ┴, ┴, true, conf-id, Ø> 

Internal recon-2(cid) i 

Precondition 

√ C/   M, э G get-quorums(C/): G C op. acc 

√ C/   M, э P put-quorums(C/): P C op. acc 

Op. type=recon 
Op. phase=get 

Cid=op. recon-conf-id 

Effect 

Current-port-number   

Current-port-number +1 

Op. phase             put 

Op. acc     Ø 

Output recon-Ack(c) i 

Precondition 

Cid=op. recon-conf-id 

Cid= <time-stamp, Pid, c> 

Э P put-quorums(C): P C op. acc 

Op. type=recon 

Op. phase=put 

Effect: 

If (conf-id=op. recon-conf-id) then 

Recon-ip    false 

Op. phase     idle 

Input geo-update (t, L) i 

Effect: 

Clock  1 

Fig .4 Operation Manager Client Read/Write/Recon and Geo-Update Transitions for Node 

  4.2 Focal Point Emulator Overview 
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   The focal point emulator implements the focal point object Model in an ad hoc mobile network. The nodes in a focal point 

(i.e. in the specified physical region) collaborate to implement a focal point object. They take advantage of the powerful LBcast 

service to implement a replicated state machine that tolerates nodes continually joining and leaving .This replicated state 

machine consistently maintains the state of the atomic object, ensuring that the invocations are performed in a consistent order 

at every mobile node [8].In this section an algorithm is presented to implement the focal point object model. the algorithm 

allows mobile nodes moving in and out of focal points, communicating with distributed clients through the geocast service, to 

implement an atomic object (with port set q=s)corresponding to a particular focal point. We refer to this algorithm as the Focal 

Point Emulator (FPE). The FPE client has three basic purposes. First, it ensures that each invocation receives at most one 

response (eliminating duplicates).Second, it abstracts away the geocast communication, providing a simple invoke/respond 

interface to the mobile node[19] [20]. Third, it provides each mobile node with multiple ports to the focal point object; the 

number of ports depends on the atomic object being implemented. The remaining code for the FPE server is in fig .5.When a 

node enters the focal point, it broadcasts a join-request message using the LBcast service and waits for a response. The other 

nodes in the focal point respond to a join-request by sending the current state of the simulated object using the LBcast service. 

As an optimization, to avoid unnecessary message traffic and collisions, if a node observes that someone else has already 

responded to a join-request, and then it does not respond. Once a node has received the response to its join-request, then it starts 

participating in the simulation, by becoming active. When a node receives a Geocast message containing an operation 

invocation, it resends it with the Lbcast service to the focal point, thus causing the invocation to become ordered with respect 

to the other LBcast messages (which are join-request messages, responses to join requests, and operation invocations ).since it 

is possible that a Geocast is received by more than one node in the focal point ,there is some bookkeeping to make sure that 

only one copy of the same invocation is actually processed by the nodes. There exists an optimization that if a node observes 

that an invocation has already been sent with LBcast service, then it does not do so. Active nodes keep track of operation 

invocations in the order in which they receive them over the LBcast service. Duplicates are discarded using the unique operation 

ids. The operations are performed on the simulated state in order. After each one, a Geocast is sent back to the invoking node 

with the response. Operations complete when the invoking node with the response. Operations complete when the invoking 

node remains in the same region as when it sent the invocation, allowing the geocast to find it. When a node leaves the focal 
point, it re-initializes its variables .A subtle point is to decide when a node should start collecting invocations to be applied to 

its replica of the object state. A node receives a snapshot of the state when it joins. However by the time the snapshot is received, 

it might be out of date, since there may have been some intervening messages from the LBcast service that have been received 

since the snapshot was sent. Therefore the joining node must record all the operation invocations that are broadcast after its join 

request was broadcast but before it received the snapshot .this is accomplished by having the joining node enter a "listening" 

state once it receives its own join request message; all invocations received when a node is in either the listening or the active 

state are recorded, and actual processing of the invocations can start once the node has received the  snapshot and has the active 

status. A precondition for  performing most of these actions that the node is in the relevant focal point. This property is covered 

in most cases by the integrity requirements of the LBcast and Geocast services, which imply that these actions only happen 

when the node is in the appropriate focal point [8][9][10].    

Focal Point Emulator Server Transitions  

Internal join (  ) Obj , i 

Precondition:  

Location   FP-location  

Status=idle 

Effect: 

Join-id ←<clock, i> 

Status← joining  

Enqueue (Lbcast-queue, <join-req, join-id>) 

Input Lbcast- rcv (< join-req, jid>) obj, i 

Effect: 

If ((status=joining))  ^  (jid=Join-id)) then  

Status ←listening  

If ((status=active))( ^ jid answered-join-reqs)) then 

Enqueue (LBcast-queue, < join-ack, jid, val>) 

Input Lbcast- rcv (<join-ack, jid, v>) obj, i 

Effect: 

Answered-join-reqs ← answered-join-reqs U {jid} 

If ((status=listening)   ^ (jid =join-id)) then 

Status ← active 

val  V                                                                                                                           

Input Geocast –rcv (< invoke, inv, oid, loc, FP-loc>) obj,i 

Effect: 

If (FP-loc=FP-location) then 

If (<inv, oid, loc>  pending-ops U completed ops) then 

Enqueue (Lbcast-queue, <invoke, inv, oid, loc>) 

Input LBcast –rcv (< invoke, inv, oid, loc>) obj,i 

Effect: 
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If ((status=listening V active) ^ 

(<inv, oid, loc>pending-ops U completed-ops)) Then 

Enqueue (pending-ops, <inv, oid, loc>) 

Internal simulate-op (inv) obj, i 

Precondition: 

Status=active 

Peek (pending-ops) =<inv, oid, loc> 

Effect: 

(Val, resp)←  (inv, val) 

 Enqueue (geocost- queue, < response, resp, oid, loc>) 

Enqueue (completed-ops, Dequeue (pending-ops)) 

Internal leave (   ) obj, i 

Precondition: 

Location fp-location 

Status ≠ idle 

Effect: 

Status← idle 

Join-id← <0, i0> 

Val ← v0 

Answered -join- reqs← Ø  

Pending –ops ← Ø 

Completed-ops ← Ø 

Lbcast-queue ← Ø 

Geocast-queue ← Ø 

Output Lbcast (m) obj, i 

Precondition: 

Peek (Lbcast-queue) =m 

Effect: 

Duqueue (Lbcast- queue) 

Output geocast (m) obj, i 

Precondition: 

Peek (geocast-queue) =m 

Effect: 

Dequeue (geocost- queue) 

Input get-update (l, t) obj,i 

Effect: 

Location ← l 

Clock← t 
Fig. 5 FPE Server Transitions for Client i and Object Obj of Variable Type  = <V, v0, invocations, responses, δ > 

 
5. Problem Specification 

  The methodology for formal specification of the geoquorum approach is illustrated by considering a set of mobile nodes with 

identifiers with values from 0 through (N-1) moving through space. Initially some of the nodes are idle while others are active. 

Nodes communicate with each other while in range. A node can becomes idle at any time but can be reactivated if it encounters 

an active node. The basic requirement is that of determining that all nodes are idle and storing that information in a Boolean 

flag (claim) located on some specific node say node (i0), formally the problem reduces. 

   Stable W       (S1) 

Claim detects W  (P1) 

    Where W is the condition  

        W=< ^ i: 0 < i ≤N:: idle [i] >      (D1) 

(S1) is a safety property stating that once all nodes are idle, no node ever becomes active again. (P1) is a progress property 

requiring the flag claim to eventually record the system's quiescence. Using idle [i] to express the quiescence of a node and 

define active [i] to be its negation. It is important to note that the problem definition in this case does not depend on the nature 

of the underlying computation.  

   

 5.1 Formal Derivation 
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       In this section, specification refinement techniques are employed toward the goal of generating a programming solution 

that accounts for the architectural features of ad hoc networks which form opportunistically as nodes move in and out of range. 

The refinement process starts by capturing high level behavioral features of the underlying application. In each case, we provide 

the informal motivation behind that particular step and show the resulting changes to the specification. As an aid to the reader, 

each refinement concludes with a list of specification statement labels that captures the current state of the refinement process, 

as in: Refinement 0: P1, S1   

  5.1.1 Refinement 1: Activation Principle 

       A node invocation may become put, get, confirm, reconfig – done. The safety property of these computations can be 

expressed as:   

Get [i]                       (S2) 

Unless                                                                       

 

Put [i]                        (S3) 

 Unless  

 

Confirm [i]                 (S4) 

 Unless  

 

                         Unless 

< Э id, ip: config-id ≠ new-config- id:: recon-ip=false> 

      In previous, it is determined that all invocations and its conditions of the application.                                                                       

Refinement 1:   P1, S2, S3, S4, S5. 

 5.1.2 Refinement 2: Parameters Based Accounting 

     Frequent node movement makes direct counting inconvenient, but we can accomplish the same thing by associating id, port-

number with each invocation node. Independent of whether it is currently idle or active, each node in the system holds zero or 

more ids. The advantage of this approach is that ids can be collected and then counted at the collection point. If we define D to 

be the number of ids in the system and I to be the number of confirm nodes, i.e.   

)3(                                     1 :: ][ :

)2(                                                ][::

D

D
+

+

iconfirmiI

iidiD  

The relationship between the two is established by the invariant:  

 Inv.D = I                                                               (S6) 

By adding this constraint to the specification, the quiescence property (W) may be replaced by the predicate (D = N), where N 

is the number of nodes in the system. Property (P1) is then replaced by:  

 Claim detects D =             (P2) 

With the collection mechanism left undefined for the time being.  

                                                     Refinement 2: P2, S2, S3, S4, S5, S6. 

 5.1.3 Refinement 3: Config-Ids Increasing 

    To maintain the invariant that the number of ids in the system reflects the number of idle nodes, activation of an idle node 

requires that the number of ids increase by one. Therefore, when an active node put invoke an idle node, they must increase 

config-id between them. To express this, we add a history variable config-id / [i], which maintains the value config-id [i], held 

before it changed last. And the put invocation is a history state of the put-ack state node; this for all states of nodes of the related 

work and the safety property of the put invocation is as follow: 

      Put [i]                                      (S7)                                           
90 

tag)-new Tag id,-config-new

id-config ::tag- new  Tag id,-config-new  id-config    :Tid, 





 id-config - new id-config ::id-config-new  id-config    :id 

)(S                [i] done-Recon

tag- new  Tag :: tag-new  Tag   :T 

5


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      Put-ack [j] 

                                    Unless 

 

 

 

Captures the requirement that, when node i activates and becomes node j, the config-id of node j must be increase in the same 

step. Clearly, this new property strengthens property (S2), (S3), (S6).  

                                                     Refinement 3: P2, S4, S5, S7.                                                                                  

     5.1.4 Refinement: Operations –Id Collection 

     According to FPE server, FPE client algorithms, the completed operations is arranged in rank of operations that have been 

simulated initially ø and there exist Val   V, holds current value of the simulated atomic node, initially v0. oid is a history id 

of the operation; new-oid is the current id of the operation. To simplify our narration, a host with a higher id is said to rank 

higher than a node with a lower id. Oid (v0) should eventually collect all N oids. We will accomplish this by forcing nodes to 

pass their oids to lower ranked nodes for this, we introduce two definitions:  

L=<+i: obj [i]:: oid [i] >             (D4)     

Count the number of oids idle agents hold. Obviously, L = N, when all nodes are idle. We also add 

w= < max i: L=N ^ oid [i] > 0:: i >   (D5) 

To keep track of the highest ranked node holding oids. After all nodes are idle, we will force w to decrease until it reaches 

0.when w=0 and L=N, obj (v0) will have collected all the oids. At this stage we add a new progress property,  

)(k         wuntil 0 P3= kw  

That begins to shape the progress of oid passing. As mentioned, the until property is a combination of a safety property (the 

unless portion) and a progress property (the leads – to portion). As long as the highest ranked oid holder passes its oids to a 

lower ranked node, we can show that all the oids will reach obj (V0= 0) without having to restrict the behavior of any node 

except node (w) = obj (w). Some can replace (P2) with 

     Claim detects (w=0)                (P4)               

Refinement 4: P2, P3, S4, S5, S7 

    5.1.5 Refinement 5: Pairwise Communication 

    According to the code for the FPE client and FPE server which discussed in section 3.2 clearly, a node can only activate 

another node or pass (join-ids=jid) to another node if the two parties can communicate. To accomplish this, we introduce the 

predicate, com (i, j) that holds if and only if nodes i and j can communicate.  

We begin this refinement with a new safety property:  

Idle [i]                   (S8) 

                                            Unless  

 < Э j: j = i : : active/[ j] ^ active [j] ^ active [i ] ^ (join-id[i] + join-id [j]=(join-id)/[i] +(join-id)/[j]-1)> 0 ^ com (i,j)> 

This requires that nodes i and J be in communication when J activates i. Also, adding the property:  

Join-id [j] > 0 ^ L=N ^ j = 0                               (P5) 

                                       Until  

                Join-id [j] = 0 ^ L= N ^ < Э i< j:: com (i, j)> 

This requires a node to pass its jids and when it does, to have been able to communicate with a lower ranked node. As we leave 

this refinement, we separate property (P5) into its two parts; a progress property,  

                  Join –id [J] > 0 ^ L = N ^ J ≠ 0         (P6) 

Leads-to  

                 Join-id[j] > 0 ^ L = N ^ < Э I < j:: com (i, j)> , And a safety property, 

Join-id [j] > 0 ^ L= N ^ j = 0                (S9) 

  + + 

= +  

     

0   1     id[j] - Config     [i]   id - Config 

  [j]   id - Config - new     [i]   id - Config - (new   [i]          

Ack  

 

-   put 

[j] ack  - put     [j] put    ::     j   : j   i 
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Unless   

Join-id[j] = 0 ^ L=N ^ < Э i< j:: com (i, j)>   

 Refinement 5: P2, P3, P6, S4, S5, S7, S8, S9 

  5.1.6 Refinement 6: Contact Guarantee  

    Property (P6) conveys two different things. First; it ensures that a node with join-ids will meet a lower ranked node, if one 

exists. Second, it requires the join-ids to be passed to the lower ranked node. The former requires us to either place restrictions 

on the movement of the mobile nodes or make assumptions about the movement. For this reason, we refine property (P6) into 

two obligations. The first   

              Join-id [J] > 0 ^ L = N        (P7) 

                               Leads – to 

                Join-id [j] > 0 ^ L = N ^ < Э i< j:: com (i,j)> 

 Guarantees that  a node with join-ids will meet a lower ranked node. The second, 

              Join-id [j] > 0 ^ L = N ^ < Э i< j:: com (i, j)> 

 Lead-to 

Join-id [j] = 0 ^ L = N ^ < Э i< j:: com (i,j)>    Forces a node that has met a lower ranked node, to pass its join-ids. At the 

point of passing, communication is still available. There two new properties replace property (P6). 

Refinement 5: P2, P3, P7, P8, S4, S5, S6, S7, S8, S9 

 

6. Performance Evaluation for Geoquorum Approach: Implementing Atomic Read/ Write Shared Memory 

in Mobile Ad Hoc Network using Fuzzy Logic. 
Let us consider these assumptions: 

1-Input status word descriptions 

Almost no- connect 

About right 

Connect 

2- Output action word descriptions  

Ack- response 

No change needed 

Almost no- response 

3- Rules 

Translate the above into plain English rules (Called linguistic Rules). These rules will appear as follow: 

Rule 1: If the status is connect then Ack – response. 

Rule 2: If the status is about right, then no change need 

Rule 3: If the status is almost no- connect then Almost no- response. 

4- The next (3 steps) use a charting technique, one function of the charting technique is to determine “The degree of 

membership” of: Almost no- connect, about right and connect triangles for a given values (see fig.6). 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig (6) Membership Functions 

 

5- Associate the above inputs and outputs as causes and effects with a rules charts, as in the next fig.7 below, the chart is made 

with triangles, the use of which will be explained. Triangles work just fine and are easy to work with width of the triangles can 
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vary [16] [17]. Narrow triangles provide tight control when operating conditions are in the area. Wide triangles provide looser 

control. Narrow triangles are usually used in the center, at the set point (the target value). 

 

 

 

 

 

 

 

 

 

 
 

 

Fig (7) Cause - Effect 

6- We draw “effect” (output determining) triangles with their value (h=3 b/s or 4 b/s and their multiplications) is determined. 

The triangles are drawn by the previous rules. Since the height doesn’t intersect with connect, so we don’t draw it in the 

following (Figure 7- (a) (b)). These “effect” triangles will be used to determine the controller output. The result is affected by 

the width we have given the triangles and will be calculated.  See fig 10 below the no change need has a height of 0.2, 0.6 and 

the Almost no- response has a height of 0.8, 0.4 because these were the intersect points for their matching “cause” triangles. 

 

 

 

 

 

 

 

 
 

Fig. (7-a): Determination of controller output. 

 

The output as seen in fig (7-a) is determined by calculating the point at which balance the two triangles, as follow: 

The area of no change need triangle is ½ × 0.2 × 5=0.5 

The area of Almost No- response triangle is ½ × 0.8 × 2=0.8 

We are looking for the balance point; find the balance point with the following calculation: 

Equation1: 0.8× D1 = 0.5 × D2 

(D1 is the fulcrum distance form X1 and, D2 is the fulcrum distance from Y1) 

Equation2: D1 + D2 = 2.5 → D1 = 2.5-D2  

So, by substituting (2-5- D2) for D1 in equation1 gives D2 

0.8× (2.5- D2) = 0.5 D2 

2-0.8 D2 = 0.5 D2 

2=1.3 D2 → D2= 1.5 

 D1 =1 
 

 
 

 

 

 

 

 

 
 

Fig (7-b): Determination of controller output. 
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The output as seen in fig (7-b) is determined by calculating the point at which balance the two triangles, as follow: 

The area of no change need triangle is ½ × 6 × 0.6= 1.8 

The area of Almost No- response triangle is ½ × 3 × 0.4=0.6 

We are looking for the balance point; find the balance point with the following calculation: 

Equation1: 0.6× D1 = 1.8 × D2 

(D1 is the fulcrum distance form X2 and, D2 is the fulcrum distance from y2) 

Equation2: D1 + D2 = 3.5 → D1 = 3.5- D2   

So, by substituting (3.5- D2) for D1 in equation1 gives D2 

0.6× (3.5- D2) = 1.8 D2 

2.1- 0.6 D2 = 1.8 D2 

2.1=1.8 D2 +0.6 D2 

2.1=2.4 D2 → D2 ≈ 0.9 

 D1 =2.6 

Note that, few discussing samples at instant times with a resulting controller output; the controller is sampling several times 

each second with a resulting “correction” output following each sample. 

CONCLUSIONS AND FUTURE WORK 

       In this paper the formal derivation of geoquorum approach for mobile ad hoc networks is presented. This formal specification 

is built from mobile unity primitives and proof logic .Also this paper provides strong evidence that a formal treatment of mobility 

and its applications isn't only feasible but, given the complexities of mobile computing. There is an open area for using this 

specification to mechanistically construct the program text as: first, defining the program components, and then deriving the 

program statements directly from the final specification, the resulting program (called a system in mobile UNITY). Also, a 

small set of mobility constraints that are necessary to ensure strong data guarantees in highly mobile networks are viewed. Also, 

quorum systems in highly mobile networks are discussed and devised a condition that is necessary for a quorum system to 

guarantee data consistency and availability under the mobility constraints as a survey. This work leaves several open questions 

such as the problem of dealing with network partitions and periods of network instability in which there are  set of assumptions 

are invalid .Also, In this paper a specification and performance evaluation for the Geoquorums approach for implementing 

atomic read/write shared memory in mobile ad hoc networks which is based on fuzzy logic is presented . The advantages of this 

solution are: a natural treatment for certain non-functional attributes that cannot be exactly evaluated and specified, and a relaxed 

matching of required/provided attributes that do not have to always be precise and consistent.  
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