
Egyptian Computer Science Journal Vol. 46 No.1 January 2022 ISSN-1110-2586

Effective Pipelined FPGA Implementation for AES-256 Algorithm

Mona Sayed Abdul-Karim1, Kamel Hussien Rahouma2, and Khalid Nasr3

 1, 2, 3 Communications and Electronics Section, Elec. Eng. Dept ., Faculty of Engineering, Minia University, Egypt.
2 Faculty of Computer Science, Nahdah University in BeniSuef, BeniSuef, Egypt

3 CS Department, College of Computer Science and Engineering, Taibah University, Saudi Arabia.
1mona.sayed.abdelkarim@mu.edu.eg,2 kamel_rahouma@yahoo.com,3 knasr@taibahu.edu.sa

Abstract

 Advanced Encryption Standard (AES) is one of the most common and secured cryptographic

techniques. In recent years, AES has received significant attention from scientists owing to its wide

spectrum of applications such as communication, network, military, electronic banking, Internet of

Things (IoT), etc. AES implementation can be executed using software and hardware tools. Using

hardware tools a higher data rate can be accomplished compared to software ones. Field Programmable

Gate Array (FPGA) is considered one of the most common and efficient tools for hardware

implementation. In this paper, we have developed an FPGA implementation for AES-256, which is

considered the most secure one among AES categories. We applied fully pipelining, sub-pipelining,

loop-unrolling techniques and other effective solutions for the most complex operations of AES-256

such as Mix-columns, and Sub-byte transformation. Our AES-256 implementation is carried out using

Virtex-7(XC7VX485T-FFG1157-1) FPGA and accomplishes a maximum operating frequency of

345.095 MHZ and throughput of 44.17 Gbps.

Keywords: AES-256, high-throughput, fully pipelining, sub-pipelining, FPGA.

1. Introduction

 Cryptography is a significant component for secure communication and transmission of

information because it provides security services like confidentiality, data integrity, authentication

access control and non-repudiation [1]. It converts sensitive information to unreadable format and

only the authorized parties have the ability to access this information by converting it back into the

original text [2]. Cryptography can be categorized into three main types; Asymmetric and symmetric

key systems [3], [4]. In symmetric systems, the encryption and decryption processes use the same

private keys [5]. In asymmetric systems, encryption and decryption use different keys which are

related by a certain function. AES is a familiar popular symmetric key cryptographic algorithm [6].

 Recently, AES has received significant attention from researchers owing to its broad range of

applications in communication, military, network, electronic banking, IoT, etc [7]. AES can be

implemented in either software or hardware structure. Hardware structure can be implemented using

reconfigurable devices such as FPGAs which give high-performance requirements. Hardware

implementation can use the loop-unrolling [7], [8] and partial rolling [9] techniques to increase the

throughput to area ratio and decrease the area cost. Furthermore, to increase running frequency and

throughput, pipelining and sub-pipelining techniques can be applied. This paper aims to introduce an

FPGA implementation of AES-256. To do that, we apply the loop-unrolling, fully pipelining, and sub-

pipelining techniques. Moreover, other efficient methods are utilized for the most complex parts of

AES-256 such as Mix-columns, and S-boxes. Such implementation is highly fast and thus it can be

utilized in high-speed networks. The rest of this paper is arranged as follows: Section 2 presents an

overview of the AES algorithm. Section 3 presents the proposed high throughput implementation for

the AES-256 algorithm. Section 4 presents results and a comparison with previous work. Section 5

gives a conclusion.

Egyptian Computer Science Journal Vol. 46 No.1 January 2022 ISSN-1110-2586

2. Overview of Advanced Encryption Standard

 AES was released by the National Institute of Standards and Technology (NIST) in 2002 [8] to

replace the old Data Encryption Standard (DES) and 3DES as the approved and strongest standard fo r

a broad range of applications [10]. AES is not built on Feistel Structure such as DES and 3DES

therefore it can process the full block of data at once in a single array during each round [11]. AES is a

symmetric block cipher that takes two inputs, the plaintext message and the key and produces a

ciphertext message as shown in Figure 1. In AES as shown in Figure 1, the plaintext message is

segmented into blocks each of 16 bytes (128 bits) in length. The length of the key is taken as 16, 24,

or 32 bytes (128, 192, or 256 bits). Hence, the algorithm is called AES-128, AES-192, or AES-256,

based on the key length [12][13]. AES encryption/decryption process consists of three main stages

[14] [15]; adding the initial key in the stage of the Add-Round key, n rounds are based on the key size

and key expansion unit. In the first part, the initial key is added to the plaintext. In the second part,

each round includes four transformations except the final one has only three, called, substitute bytes

(S-Box), Shift-Rows, Mix-Columns and Add-Round Key [7], [16]. Mix-Columns operation is

removed from the final round. All AES operations are executed on 8-bits over the finite field GF(28)

by the following polynomial given in Eq. 1 [17], [12]:

𝑚(𝑋) = 𝑋8 + 𝑋4 + 𝑋3 + 𝑋 + 1 (1)

 Each time, a single 128-bit block is processed. The block is organized as a 4*4 square array of

bytes named the State array [12]. The State array is filled with the 128-bit block. The array is updated

at each stage of AES. When the final stage is ended, the State array is copied to an output one [12],

[14]. In the following sub-sections, we will give an overview of the transformations of each round.

Figure 1. The structure of AES-256.

2.1. Substitute Bytes Transformation (S-Box)
 S-box is an invertible transformation that replaces independently each byte of the State array with

its corresponding byte value using a fixed size look-up table (256 bytes) [16]. The S-box offers non-

linearity and confusion depends on multiplicative inverse and affine transformation as shown in Eq.2

and 3 [16], [18].

𝑆(𝑋) = 𝐴𝑓𝑓𝑖𝑛𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 (𝑋−1) (2)

Egyptian Computer Science Journal Vol. 46 No.1 January 2022 ISSN-1110-2586

𝐴𝑓𝑓𝑖𝑛𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 =

(

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1)

 ×

(

𝑖7
𝑖6
𝑖5
𝑖4
𝑖3
𝑖2
𝑖1
𝑖0)

+

(

0
1
1
0
0
0
1
1)

 (3)

Where 𝑖 = 𝑋−1.

2.2. Shift Rows Transformation
 In this transformation, the rows of the State array are circularly left -shifted with different values as

follows [12], [18]; The first row is not changed. The second row is circularly left-shifted by one byte.

The third row is by two bytes the fourth row is by three bytes [15], [19].

2.3. Mix-Columns Transformation
 Mix-columns operation is processed individually according to the elements of each column of the

State array. Each byte of a column is interchanged by a new one [19], [20]. The new byte is a function

of all four bytes of the same column. Each column is expressed by a four-term polynomial over GF(2 8)

[21]. The column is multiplied by a constant polynomial a(x) specified in Eq. 4 and then modulo(𝑋4 +
1) is calculated. Eq. 5 presents the calculations of the Mix-columns transformation in matrix

multiplication [22], [23]. Where i is the old column and d is the new one.

𝑎(𝑥) = (03)𝑥3+ (01)𝑥2 + (01)𝑥 + (02) (4)

[

𝑑0
𝑑1
𝑑2
𝑑3

] = [

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

] × [

𝑖0
𝑖5
𝑖10
𝑖15

] (5)

2.4. Add Round Key Transformation
 The round key array is added to the State array over GF(28). The addition in GF(28) is executed

using a bitwise Exclusive-OR (XOR) operation for each byte of the sub-key with the corresponding

byte of the State array. For each round, the sub-key is generated from the main key using the key

expansion unit[24], [25]. The same operation is executed in the decryption process.

2.5. Key expansion
 Each round has its key which is generated from the master key (of length Nk) using key expansion.

The AES algorithm carries out Nr rounds and each round needs an initial group of Nb words of the key.

A total number of Nb(Nr+ 1) words are produced from the key expansion [26], [27]. The resultant key

schedule consists of an array of 4-byte words, defined w[i], with i in the range 0 ≤ 𝑡 < 𝑁𝑏(𝑁𝑟 + 1)
[21]. A pseudo-code representation [26] of the key expansion is given in Table 1. For AES-256, Nk is

8, Nb is 4, Nr is 14, SubWord() is a function that applies the S-box to each byte of the four bytes and

produces an output word, RotWord() is a function that does a cyclic rotation by one byte, and

Rcon[i/Nk] is the round constant and i is the word index.

3. Proposed High Throughput Implementation for AES-256

 First, we choose the AES-256 since it is more secure than AES-128 and AES-192 because of its

longer key size and more rounds. Hence, we tried to propose an efficient implementation for it. Our

implementation of the AES-256 is performed using loop-unrolling techniques to eliminate all the

required loops in the algorithm which results in changing the critical path. This modification in the

critical path allows inserting some pipelining registers which in turn raises the operating frequency,

speeds up the algorithm and enhances the quality of service for the applications of AES-256. We app ly

both sub and full-pipelining techniques. The pipelining registers (called Pip. Reg. in Figure 2 and

Figure 3) are added between the rounds in the whole algorithm and between the operations in each

round. Figure 2 shows the overall block diagram of loop-unrolled and pipelined AES-256. Figure 3

shows the overall block diagram of the sub-pipelined round of AES-256. We also employ efficient

methods for the most complex operations in AES-256, Mix-columns and S-box. They will be discussed

in the following sub-sections.

Egyptian Computer Science Journal Vol. 46 No.1 January 2022 ISSN-1110-2586

Table 1. Pseudocode for key expansion.

Algorithm 1: Key expansion

KeyExpansion (byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
begin
word temp
i = 0
while (i < Nk)
 w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
 i = i+1
end while
i = Nk
while (i < Nb * (Nr+1))
 temp = w[i-1]
 if (i mod Nk = 0)
 temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]
 else if (Nk > 6 and i mod Nk = 4)
 temp = SubWord(temp)
 end if
 w[i] = w[i-Nk] xor temp
 i = i + 1
 end while
end

Figure 2. The block diagram of the loop-unrolled and pipelined AES-256

Figure 3. The block diagram of the sub-pipelined round of AES-256.

3.1. Efficient Mix-Columns Transformation
 Mix-Columns transformation is calculated by applying Eq. (4) [14]. The Mix-Columns matrix

includes numbers 00;01;02, and 03 only. Multiplication with 00 and 01 does not require much

processing time. The multiplication with 03 can be implemented using Eq. (6) where a is a GF(28)

element.

3 × 𝑎 = 2 × 𝑎 +𝑎 (6)

We can write multiplication with 02 as shown in Eq. (7):

2 × 𝑎 = (𝑎7𝑎6𝑎5𝑎4𝑎3𝑎2𝑎1𝑎0) × (00000010)𝑚𝑜𝑑(𝑋
8 + 𝑋4 +𝑋3 + 𝑋 + 1) (7)

Consequently, we have:

Egyptian Computer Science Journal Vol. 46 No.1 January 2022 ISSN-1110-2586

2 × 𝑎 =(𝑎7𝑋
8 + 𝑎6𝑋

7 + 𝑎5𝑋
6 + 𝑎4𝑋

5 + 𝑎3 𝑋
4 + 𝑎2𝑋

3 + 𝑎1𝑋
2 +𝑎0𝑋) 𝑚𝑜𝑑(𝑋

8 + 𝑋4 + 𝑋3 + 𝑋 +
1) (8)

By substituting Eq. (8) in Eq. (7) and then doing some simplification, we obtain Eq. (9). This equation

provides an efficient implementation of multiplication by 02 which d oes not require significant

processing time.

(𝑎7𝑋

8 + 𝑎6𝑋
7 +𝑎5𝑋

6 + 𝑎4𝑋
5 + 𝑎3 𝑋

4 + 𝑎2𝑋
3 + 𝑎1𝑋

2 + 𝑎0𝑋)

= 𝑎7 × (𝑋
8 + 𝑋4 + 𝑋3 + 𝑋 + 1) + 𝑎6𝑋

7 + 𝑎5𝑋
6 + 𝑎4𝑋

5 + (𝑎3+𝑎7)𝑋
4

+ (𝑎2+𝑎7)𝑋
3 + 𝑎1𝑋

2 + (𝑎0 + 𝑎7)𝑋 +𝑎7 (9)

3.2. Efficient S-box method using logic optimization based on the truth table
 We apply an efficient pipelined S-box implementation. It uses combinational logic to solve the

unbreakable delay caused by the look-up table. Moreover, It decreases the critical path delay incurred

by complex field arithmetic. The transformation of the S-box has a 16 ×16 bytes table. So, its truth

table has 128 rows. This truth table produces an output with an 8 -bit length. Thus, it is very hard to

minimize this complex and large table. The solution is to partition the main truth table of the S-box

into smaller 16 sub-truth tables according to the least (or the most) significant 4 bits of the main truth

table. These 4 bits will be the input of the 16 modules logic functions (from M1 to M16) as shown in

Figure 4. Minimization of these functions is gotten using the Karnaugh map which is implemented

using the Sum of Products approach by the basic gates. After the minimization of the sub -truth tables,

sixteen 8-bit logic output functions are produced. Another four bits of data of least significant bits are

chosen to be the input of a 16 to 1 multiplexer that will generate the S-box final output. An effective

16 to 1 multiplexer is executed using five small (4 to 1) multiplexers as shown in Figure 4. This

method permits placing some pipelining registers (Pip. Reg. in Figure 4) between these multiplexers

to carry out the sub-pipelining which results in a decrease of the critical delay path and improves the

S-box speed and in its turn the whole AES-256 algorithm.

Figure 4. The architecture of the S-box using logic circuits.

4. Results and Comparison

4.1. Simulation Results

 The AES-256 is coded using VHDL language and simulation results are taken using Vivado Design

Suite 2019.1 from XILINX as a simulation tool. In the following figures, we simulated our design to

create waveforms that represent the functionality AES-256. Figure 5 shows the timing simulation of

the S-box. Where signal SI represents S-box input, signal So represents the output, and signals M1out:

M6out are the outputs of the 16 modules' logic functions. Figure 6 shows the timing simulation of the

key expansion unit. Where signal Key represents the original key of size 256 bit and signals K1:K14

represent the sub-keys of size 128 bit. Figure 7 shows the timing simulation of the whole AES-256.

Where the input signal CLK is used to trigger the design, the input signal RST is used to reset the

Egyptian Computer Science Journal Vol. 46 No.1 January 2022 ISSN-1110-2586

design. Signal Plaintext represents the original message to be encrypted (clear text), signal Key

represents the master key, signal CipherTxt represents the final encrypted message after 14 rounds.

Signals K1:K14 represent the sub-keys of size 128 bit and signals, CRs, are the ciphertexts after each

round.

Figure 5. Timing simulation of the S-box transformation.

Figure 6. Timing simulation of the key expansion unit.

Figure 7. Timing Simulation of the whole AES-256 design.

4.2. Implementation Results

 The FPGA implementation of the proposed AES-256 implementation is carried out using Virtex-7

(XC7VX485T-FFG1157-1) with Vivado Design Suite 2019.1 (with aid of Xilinx ISE 14.7) from Xilinx

Egyptian Computer Science Journal Vol. 46 No.1 January 2022 ISSN-1110-2586

as a synthesis tool. The top-level RTL schematics are given in Figure 8, Figure 9, and Figure 10 to

establish the fact that the HDL (Hardware Description Language) codes of t he AES-256 are

synthesizable. Figure 8 shows the RTL schematic of S-box operation, which includes 16 logic

functions (M1, M2, M3… M16), 5 multiplexers and pipelining registers as explained earlier in Figure

4. Figure 9 shows the RTL schematic of a single round of the overall algorithm, which includes the

main operations of each round (Add round key, Mix-columns, Shift rows and Sub bytes) and some

pipelining registers as explained earlier in Figure 2. Figure 10 shows the RTL schematic of the whole

AES-256 algorithm, which includes 14 rounds, a key expansion unit and as explained earlier in Figure

3.

Figure 8. RTL schematic of S-Box operation.

Figure 9. RTL schematic of one round of AES-256.

Figure 10. RTL schematic of AES-256 algorithm.

Egyptian Computer Science Journal Vol. 46 No.1 January 2022 ISSN-1110-2586

 Performance metrics for our design include the maximum operational frequency, area or device

utilization, and power consumption. The area is calculated in terms of FPGA look-up tables (LUT),

flip-flops (FF), and general buffers (BUFG) to know the percentage of the used logic resources from

the available resources as shown in Table 2. The total on-chip power consumption in FPGA circuits is

estimated by summing static and dynamic power. Static power is due to the leakage current of

transistors during steady-state. Dynamic power dissipation is due to components and clocks. Figure 11

shows the power analysis summary of the design at the maximum clock frequency (345.095 MHZ).

Table 2. Device utilization summary of AES-256 implementation.

Logic Utilization Utilization Available Utilization

LUT 31964 303600 10.53%

LUTRAM 832 130800 0.64%

FF 54377 607200 8.96%

IO 514 600 85.67%

BUFG 2 32 6.25%

Figure 11. Power analysis of AES-256 implementation at maximum freq.

4.3. Comparison with Previous Work

 Hardware implementation of encryption algorithms can be characterized by multiple performance

parameters such as latency and throughput [28]. Encryption/decryption throughput is described as the

number of encrypted or decrypted bits in a time unit. Typically, the encryption and decryption

throughputs are equal. Consequently, only one parameter is reported. A typical unit of throughput is

Mbit/s (megabit per second) or Gbit/s (gigabit per second) [28]. Encryption/decryption latency is

described as the time consumed to encrypt a single block of plaintext or to decrypt its ciphertext. The

typical unit of latency is ns (nanosecond). Latency and throughput are related by Eq. 11 [28]. A

comparison between our implementation and previous work in terms of throughput and the maximum

frequency is given in Table 3. Our implementation achieves a very high operating frequency and

throughput in comparison with some previous work.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑙𝑜𝑐𝑘𝑠 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑆𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝑙𝑦

𝐿𝑎𝑡𝑒𝑛𝑐𝑦
 (10)

Table 3. Comparison with previous work.

 Device Throughput Max. Freq. (MHZ)

Our work Virtex-7(XC7VX485T-FFG1157-1) 44.17 Gbps 345.095

[29] Virtex-5 (XC5VLX50) 829.99 Mbps ---

[30] Spartan (XC3S500) 352 Mbps ---

[31] Virtex-7 (XC7VX485T-FFG1157) 278 Mbps 161

Egyptian Computer Science Journal Vol. 46 No.1 January 2022 ISSN-1110-2586

5. Conclusions

 In this paper, we have proposed an effective FPGA implementation for AES-256 using some

efficient techniques such as loop-unrolling, and sub/fully-pipelining techniques. Moreover, we have

applied other efficient solutions for the most complex parts of AES-256 such as Mix-columns and S-

box. Our implementation of AES-256 is carried out using Virtex-7(XC7VX485T-FFG1157-1) FPGA.

We have achieved high throughput of 44.17 Gbps and a maximum operating frequency of 345.095

MHZ.

References
[1] M. Faheem, S. Jamel, A. Hassan, Z. A., N. Shafinaz, and M. Mat, “A Survey on the

Cryptographic Encryption Algorithms,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 11, pp. 333–

344, 2017, doi: 10.14569/ijacsa.2017.081141.

[2] R. Yegireddi and R. K. Kumar, “A survey on conventional encryption algorithms of

Cryptography,” Proc. 2016 Int. Conf. ICT Business, Ind. Gov. ICTBIG 2016 , 2017, doi:

10.1109/ICTBIG.2016.7892684.

[3] M. A. Siddiqui, K. Aslam, A. Afroz, and F. H. Rizvi, “Imp lementation of Advanced

Encryption Standard (AES) on FPGA,” J. Comput. Sci. Newports Inst. Commun. Econ., vol.

7, no. 5, pp. 35–46, 2017.

[4] K. H. Rahouma, F. M. Abdelghany, L. N. Mahdy, and Y. B. E. Hassan, “Design and

Implementation of a New DNA Based Stream Cipher Algorithm using Python,” Egypt.

Comput. Sci. J., vol. 44, no. 1, pp. 102–113, 2020.

[5] M. T. Saleh, M. A. W. Shalaby, H. N. Elmahdy, and S. Engineering, “Modified Arnold ’ s Cat

Map -RC4 Encryption Technique for Medical Images,” Egypt. Comput. Sci. J., vol. 44, no. 2,

pp. 11–23, 2020.

[6] A. M. Qadir and N. Varol, “A review paper on cryptography,” 7th Int. Symp. Digit. Forensics

Secur. ISDFS 2019, pp. 1–6, 2019, doi: 10.1109/ISDFS.2019.8757514.

[7] M. S. Abdul-Karim, K. H. Rahouma, and K. Na sr, “High Throughput and Fully Pipelined

FPGA Implementation of AES-192 Algorithm,” in Proceedings of 2020 International

Conference on Innovative Trends in Communication and Computer Engineering, ITCE 2020 ,

2020, pp. 137–142, doi: 10.1109/ITCE48509.2020.9047815.

[8] G. P. Saggese, A. Mazzeo, N. Mazzocca, and A. G. M. Strollo, “An FPGA-Based Performance

Analysis of the Unrolling, Tiling, and Pipelining of the AES Algorithm BT - Field

Programmable Logic and Application,” 2003, pp. 292–302.

[9] H. Qin, T. Sasao, and Y. Iguchi, “A design of AES encryption circuit with 128 -bit keys using

look-up table ring on FPGA,” IEICE Trans. Inf. Syst., vol. E89-D, no. 3, pp. 1139–1147, 2006,

doi: 10.1093/IETISY/E89-D.3.1139.

[10] U. Arom-Oon, “An AES cryptosystem for small scale network,” in Proceedings - ACDT 2017:

3rd Asian Conference on Defence Technology: Advance Research Collaboration on Defence

Technology, 2017, pp. 49–53, doi: 10.1109/ACDT.2017.7886156.

[11] Ritambhara, A. Gupta, and M. Jaiswal, “An enhanced AES algorithm using cascading method

on 400 bits key size used in enhancing the safety of next generation internet of things (IOT),”

in Proceeding - IEEE International Conference on Computing, Communication and

Automation, ICCCA 2017, 2017, pp. 422–427, doi: 10.1109/CCAA.2017.8229877.

[12] W. Stallings, Cryptography and Network Security: Principles and Practice , 6th ed. USA:

Prentice Hall Press, 2013.

[13] Y. Yuan, Y. Yang, L. Wu, and X. Zhang, “A High Performance Encryption System Based on

AES Algorithm with Novel Hardware Implementation,” 2018, doi:

10.1109/EDSSC.2018.8487056.

[14] A. Soltani and S. Sharifian, “An ultra -high throughput and fully pipelined implementation of

AES algorithm on FPGA,” Microprocess. Microsyst., vol. 39, no. 7, pp. 480–493, 2015, doi:

https://doi.org/10.1016/j.micpro.2015.07.005.

[15] R. Santhosh Kumar, R. Shashidhar, A. M. Mahalingaswamy, M. S. Praveen Kumar, and M.

Roopa, “Design of High Speed AES System for Efficient Data Encryption and Decryption

System using FPGA,” in 3rd International Conference on Electrical, Electronics,

Communication, Computer Technologies and Optimization Techniques, ICEECCOT 2018 ,

2018, pp. 1279–1282, doi: 10.1109/ICEECCOT43722.2018.9001535.

[16] L. Yu, D. Zhang, L. Wu, S. Xie, D. Su, and X. Wang, “AES Design Imp rovements Towards

Information Security Considering Scan Attack,” in 2018 17th IEEE International Conference

On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International

Egyptian Computer Science Journal Vol. 46 No.1 January 2022 ISSN-1110-2586

Conference On Big Data Science And Engineering (TrustCom/BigDataSE), 2018, pp. 322–326,

doi: 10.1109/TrustCom/BigDataSE.2018.00056.

[17] V. Gopi and E. Logashanmugam, “Design and analysis of nonlinear AES S-box and mix-

column transformation with the pipelined architecture,” 2013, pp. 235 –238, doi:

10.1109/ICCTET.2013.6675955.

[18] G. Manjula and H. S. Mohan, “Improved Dynamic S-Box generation using Hash function for

AES and its Performance Analysis,” in Proceedings of the 2nd International Conference on

Green Computing and Internet of Things, ICGCIoT 2018 , 2018, pp. 109–115, doi:

10.1109/ICGCIOT.2018.8753074.

[19] P. Parikh and S. Narkhede, “High performance implementation of mixing of column and inv

mixing of column for AES on FPGA,” in 2016 International Conference on Computation of

Power, Energy, Information and Communication, ICCPEIC 2016, 2016, pp. 174–179, doi:

10.1109/ICCPEIC.2016.7557244.

[20] S. Sridevi Sathya Priya, M. Junias, S. Sarah Jenifer, and A. Lavanya, “Implementation of

Efficient Mix Column Transformation for AES encryption,” in Proceedings of the 4th

International Conference on Devices, Circuits and Systems, ICDCS 2018 , 2019, pp. 95–100,

doi: 10.1109/ICDCSYST.2018.8605077.

[21] M. Sasikumar, K. N. Sreehari, and R. Bhakthavatchalu, “Systolic array implementation of m ix

column and inverse mix column of AES,” in Proceedings of the 2019 IEEE International

Conference on Communication and Signal Processing, ICCSP 2019 , 2019, pp. 730–734, doi:

10.1109/ICCSP.2019.8697927.

[22] R. Riyaldhi, Rojali, and A. Kurniawan, “Improvement of Advanced Encryption Standard

Algorithm With Shift Row and S.Box Modification Mapping in Mix Column,” Procedia

Comput. Sci., vol. 116, pp. 401–407, 2017, doi: https://doi.org/10.1016/j.procs.2017.10.079.

[23] A. Barrera, C. W. Cheng, and S. Kumar, “Improved Mix Column Computation of

Cryptographic AES,” in Proceedings - 2019 2nd International Conference on Data Intelligence

and Security, ICDIS 2019, 2019, pp. 229–232, doi: 10.1109/ICDIS.2019.00042.

[24] R. Andriani, S. E. Wijayanti, and F. W. Wibowo, “Comparision of AES 128, 192 and 256 bit

algorithm for encryption and description file,” in Proceedings - 2018 3rd International

Conference on Information Technology, Information Systems and Electrical Engineering,

ICITISEE 2018, 2018, pp. 120–124, doi: 10.1109/ICITISEE.2018.8720983.

[25] K. B. Jithendra and T. K. Shahana, “New Results in Related Key Impossible Differential

Cryptanalysis on Reduced Round AES-192,” 2018 Int. Conf. Adv. Commun. Comput. Technol.

ICACCT 2018, pp. 291–295, 2018, doi: 10.1109/ICACCT.2018.8529666.

[26] NIST, “Federal Information Processing Standards Publication 197 Announcing the

ADVANCED ENCRYPTION STANDARD (AES),” Natl. Inst. Stand. Technol., 2001,

[Online]. Available: http://csrc.nist.gov/csor/.

[27] A. Murtaza, S. J. H. Pirzada, M. N. Hasan, T. Xu, and L. Jianwei, “Parallelized key expansion

algorithm for advanced encryption standard,” Proc. IEEE Int. Conf. Softw. Eng. Serv. Sci.

ICSESS, pp. 609–612, 2019, doi: 10.1109/ICSESS47205.2019.9040825.

[28] K. Gaj and P. Chodowiec, “FPGA and ASIC Implementations of AES,” Cryptogr. Eng., pp.

235–294, 2009, doi: 10.1007/978-0-387-71817-0_10.

[29] S. El Adib et al., “Implementation of the AES-128 , AES-192 , and AES-256 On Virtex-5

FPGAs : Device Resources and Execution Time Reduction,” vol. 1, no. 2, pp. 8 –12, 2013.

[30] G. S. S. Venkateswarlu, Deepa G.M, “Implementation of AES-256 Encryption Algorithm on

FPGA,” Int. J. Emerg. Eng. Res. Technol., vol. 3, no. 4, pp. 104–108, 2015.

[31] M. Gunasekaran, K. Rahul, and S. Yachareni, “Virtex 7 FPGA implementation of 256 Bit Key

AES algorithm with key schedule and sub bytes block optimization,” 2021 IEEE Int. IOT,

Electron. Mechatronics Conf. IEMTRONICS 2021 - Proc., Apr. 2021, doi:

10.1109/IEMTRONICS52119.2021.9422547.

